Biocatalysis by Transglutaminases: A Review of Biotechnological Applications
<p>Transamidation reactions catalysed by transglutaminases (TGs). In response to triggering Ca<sup>2+</sup> concentration and in appropriate redox conditions, TG conformation is open and the catalytic cysteine (Cys) thiol (SH) group is prone to bind the γ-carboxamide group of a peptide-bound glutamine residue (Gln). Therefore, a thioester bond is created between the TG’s Cys and the Gln of a peptide target, with consequent ammonia release (<b>a</b>). TG catalyses the transfer of the acyl intermediate product to a nucleophilic substrate, like an ε-amino group of a peptide-bound lysine residue (Lys), leading to the formation of ε-(γ-glutamyl)lysine isopeptide bond, also called a crosslink (<b>a</b>). TG catalyses the incorporation of monoamines (<b>b</b>) or polyamines (<b>c</b>), acting as acyl-acceptors in a reaction similar to the crosslinking.</p> "> Figure 2
<p>Human transglutaminase 2 (hTG2) structure and regulation. (<b>a</b>) hTG2 structure is shown in closed conformation. The catalytic site is composed by the triad, Cys277, His335, and Asp358. In this conformation, the protein is inactive, since the two β-barrels hide the catalytic pocket. Three-dimensional structure (PDB: 4PYG) was produced with the molecule modelling software, “EzMol” (version 1.22) [<a href="#B34-micromachines-09-00562" class="html-bibr">34</a>]. (<b>b</b>) Effect of redox regulation on TG2 conformations. TG2 is locked in closed conformation when bound to guanosine triphosphate (GTP) and calcium concentration is low. Conversely, it assumes an open conformation after calcium binding, which can either be inactive when in oxidising conditions or active in reducing conditions [<a href="#B35-micromachines-09-00562" class="html-bibr">35</a>].</p> "> Figure 3
<p>Microbial TG structure. mTG is composed by a single, compact domain. The amino acids of the active site (Cys64, Asp255, and His274) constitute the mTG catalytic triad. The modelling software, “EzMol”, was used to generate the structure (PDB: 1IU4) [<a href="#B34-micromachines-09-00562" class="html-bibr">34</a>].</p> "> Figure 4
<p>Schematic representation of TG2-crosslinked ELPs hydrogels. The repeat sequence [VPGXG(VPGVG)<sub>6</sub>]<sub>16</sub> of ELPs was genetically designed to produce two libraries by substituting the X residue with Lys (K) and Gln (Q), thus generating K-ELPs and Q-ELPs, respectively. TG2 mediates the formation of a crosslink between the Gln and Lys residues of ELPs [<a href="#B191-micromachines-09-00562" class="html-bibr">191</a>]. The Q and K side chains are superimposed to visualize the TG reaction. TG2 three-dimensional structure (PDB: 2Q3Z) was produced with the molecule modelling software, “EzMol” [<a href="#B34-micromachines-09-00562" class="html-bibr">34</a>].</p> "> Figure 5
<p>Protein-DNA conjugation. By exploiting benzyloxycarbonyl-<span class="html-small-caps">l</span>-glutaminylglycine (Z-QG) as a TG substrate, mTG induces site-specific and covalent conjugation of DNA to proteins, such as alkaline phosphatase (AP). (<b>a</b>) Chemical activation of Z-QG carboxylate with N-hydroxysuccinimide (NHS) and formation of the activated Z-QG-NHS, which is then modified by addition of an aminated oligodeoxynucleotide (DNA). (<b>b</b>) mTG mediates the formation of a crosslink between the Gln residue of Z-QG-DNA and the Lys residue of the MKHKGS peptide tag fused to AP. The Q and K side chains are superimposed to visualize the TG reaction [<a href="#B213-micromachines-09-00562" class="html-bibr">213</a>]. The modelling software, “EzMol”, was used to generate mTG structure (PDB: 1IU4) [<a href="#B34-micromachines-09-00562" class="html-bibr">34</a>].</p> "> Figure 6
<p>Schematic representation of TG-mediated antibody conjugation. (<b>a</b>) TGs can transamidate modified substrates (e.g., aminated or Lys carrying derivatives), such as biotin, fluorophores, or radioisotopes (schematically shown with the yellow “S”), to a carboxamide group of a Q residue on the antibody heavy chain peptide sequence [<a href="#B222-micromachines-09-00562" class="html-bibr">222</a>,<a href="#B223-micromachines-09-00562" class="html-bibr">223</a>,<a href="#B225-micromachines-09-00562" class="html-bibr">225</a>]. (<b>b</b>) Branched linkers, conjugated by mTG to the heavy chain of an antibody (e.g., anti-HER2 monoclonal antibody), can be coupled by azide-alkyne cycloaddition to an antimitotic drug (shown as a green “D”) [<a href="#B224-micromachines-09-00562" class="html-bibr">224</a>].</p> ">
Abstract
:1. Transglutaminases: Enzymatic Activity and Regulation
2. TG2-Mediated Polymerisation of Extracellular Matrix Proteins
3. Substrate Specificity of TGs Isozymes: mTG, TG2, and FXIIIa
4. TGs Crosslinking Activity in Biotechnological Applications
4.1. Applications in Food Industry
4.2. Applications in Science and Biomedicine
4.2.1. Hydrogels and Scaffolds
4.2.2. Bio-Conjugation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sarkar, N.K.; Clarke, D.D.; Waelsch, H. An Enzymically Catalyzed Incorporation of Amines into Proteins. Biochim. Biophys. Acta 1957, 25, 451–452. [Google Scholar] [CrossRef]
- Demeny, M.A.; Korponay-Szabo, I.; Fesus, L. Structure of Transglutaminases: Unique Features Serve Diverse Functions. In Transglutaminases: Multiple Functional Modifiers and Targets for New Drug Discovery; Hitomi, K., Kojima, S., Fesus, L., Eds.; Springer: Tokyo, Japan, 2015; pp. 1–2. [Google Scholar]
- Folk, J.E. Mechanism of Action of Guinea Pig Liver Transglutaminase. VI. Order of Substrate Addition. J. Biol. Chem. 1969, 244, 3707–3713. [Google Scholar] [PubMed]
- Pisano, J.J.; Finlayson, J.S.; Peyton, M.P. Cross-Link in Fibrin Polymerized by Factor 13: Epsilon-(Gamma-Glutamyl)Lysine. Science 1968, 160, 892–893. [Google Scholar] [CrossRef] [PubMed]
- Matacic, S.; Loewy, A.G. The Identification of Isopeptide Crosslinks in Insoluble Fibrin. Biochem. Biophys. Res. Commun. 1968, 30, 356–362. [Google Scholar] [CrossRef]
- Folk, J.E.; Park, M.H.; Chung, S.I.; Schrode, J.; Lester, E.P.; Cooper, H.L. Polyamines as Physiological Substrates for Transglutaminases. J. Biol. Chem. 1980, 255, 3695–3700. [Google Scholar] [PubMed]
- Korsgren, C.; Lawler, J.; Lambert, S.; Speicher, D.; Cohen, C.M. Complete Amino Acid Sequence and Homologies of Human Erythrocyte Membrane Protein Band 4.2. Proc. Natl. Acad. Sci. USA 1990, 87, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Grenard, P.; Bates, M.K.; Aeschlimann, D. Evolution of Transglutaminase Genes: Identification of a Transglutaminase Gene Cluster on Human Chromosome 15q15. Structure of the Gene Encoding Transglutaminase X and a Novel Gene Family Member, Transglutaminase Z. J. Biol. Chem. 2001, 276, 33066–33078. [Google Scholar] [CrossRef] [PubMed]
- Folk, J.; Finlayson, J. The ε-(Γ-Glutamyl) Lysine Crosslink and the Catalytic Role of Transglutaminases. Adv. Protein Chem. 1977, 31, 1–133. [Google Scholar] [PubMed]
- Greenberg, C.S.; Birckbichler, P.J.; Rice, R.H. Transglutaminases: Multifunctional Cross-Linking Enzymes that Stabilize Tissues. FASEB J. 1991, 5, 3071–3077. [Google Scholar] [CrossRef] [PubMed]
- Keillor, J.W.; Clouthier, C.M.; Apperley, K.Y.; Akbar, A.; Mulani, A. Acyl Transfer Mechanisms of Tissue Transglutaminase. Bioorg. Chem. 2014, 57, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.; Mycek, M.; Neidle, A.; Waelsch, H. The Incorporation of Amines into Protein. Arch. Biochem. Biophys. 1959, 79, 338–354. [Google Scholar] [CrossRef]
- Mycek, M.J.; Clarke, D.D.; Neidle, A.; Waelsch, H. Amine Incorporation into Insulin as Catalyzed by Transglutaminase. Arch. Biochem. Biophys. 1959, 84, 528–540. [Google Scholar] [CrossRef]
- Nurminskaya, M.V.; Belkin, A.M. Cellular Functions of Tissue Transglutaminase. Int. Rev. Cell. Mol. Biol. 2012. [Google Scholar] [CrossRef]
- Yee, V.C.; Pedersen, L.C.; Le Trong, I.; Bishop, P.D.; Stenkamp, R.E.; Teller, D.C. Three-Dimensional Structure of a Transglutaminase: Human Blood Coagulation Factor XIII. Proc. Natl. Acad. Sci. USA 1994, 91, 7296–7300. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cerione, R.A.; Clardy, J. Structural Basis for the Guanine Nucleotide-Binding Activity of Tissue Transglutaminase and its Regulation of Transamidation Activity. Proc. Natl. Acad. Sci. USA 2002, 99, 2743–2747. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.N.; Iismaa, S.; Begg, G.; Freymann, D.M.; Graham, R.M.; Lorand, L. Conserved Tryptophan in the Core Domain of Transglutaminase is Essential for Catalytic Activity. Proc. Natl. Acad. Sci. USA 2002, 99, 2738–2742. [Google Scholar] [CrossRef] [PubMed]
- Iismaa, S.E.; Holman, S.; Wouters, M.A.; Lorand, L.; Graham, R.M.; Husain, A. Evolutionary Specialization of a Tryptophan Indole Group for Transition-State Stabilization by Eukaryotic Transglutaminases. Proc. Natl. Acad. Sci. USA 2003, 100, 12636–12641. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.M.; Murthy, S.N.; Radek, J.T.; Lorand, L. The Fibronectin-Binding Domain of Transglutaminase. J. Biol. Chem. 1995, 270, 5654–5658. [Google Scholar] [CrossRef] [PubMed]
- Gaudry, C.A.; Verderio, E.; Aeschlimann, D.; Cox, A.; Smith, C.; Griffin, M. Cell Surface Localization of Tissue Transglutaminase is Dependent on a Fibronectin-Binding Site in its N-Terminal Beta-Sandwich Domain. J. Biol. Chem. 1999, 274, 30707–30714. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Zemskov, E.A.; Lorand, L.; Belkin, A.M. Identification of a Novel Recognition Sequence for Fibronectin within the NH2-Terminal Beta-Sandwich Domain of Tissue Transglutaminase. J. Biol. Chem. 2005, 280, 23675–23683. [Google Scholar] [CrossRef] [PubMed]
- Achyuthan, K.E.; Greenberg, C.S. Identification of a Guanosine Triphosphate-Binding Site on Guinea Pig Liver Transglutaminase. Role of GTP and Calcium Ions in Modulating Activity. J. Biol. Chem. 1987, 262, 1901–1906. [Google Scholar] [PubMed]
- Bergamini, C.M.; Signorini, M.; Poltronieri, L. Inhibition of Erythrocyte Transglutaminase by GTP. Biochim. Biophys. Acta 1987, 916, 149–151. [Google Scholar] [CrossRef]
- Nakaoka, H.; Perez, D.M.; Baek, K.J.; Das, T.; Husain, A.; Misono, K.; Im, M.J.; Graham, R.M. Gh: A GTP-Binding Protein with Transglutaminase Activity and Receptor Signaling Function. Science 1994, 264, 1593–1596. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, C.M. GTP Modulates Calcium Binding and Cation-Induced Conformational Changes in Erythrocyte Transglutaminase. FEBS Lett. 1988, 239, 255–258. [Google Scholar] [CrossRef]
- Casadio, R.; Polverini, E.; Mariani, P.; Spinozzi, F.; Carsughi, F.; Fontana, A.; Polverino de Laureto, P.; Matteucci, G.; Bergamini, C.M. The Structural Basis for the Regulation of Tissue Transglutaminase by Calcium Ions. Eur. J. Biochem. 1999, 262, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, R.; Csosz, E.; Kurtan, T.; Antus, S.; Szigeti, K.; Simon-Vecsei, Z.; Korponay-Szabo, I.R.; Keresztessy, Z.; Fesus, L. Functional Significance of Five Noncanonical Ca2+-Binding Sites of Human Transglutaminase 2 Characterized by Site-Directed Mutagenesis. FEBS J. 2009, 276, 7083–7096. [Google Scholar] [CrossRef] [PubMed]
- Candi, E.; Paradisi, A.; Terrinoni, A.; Pietroni, V.; Oddi, S.; Cadot, B.; Jogini, V.; Meiyappan, M.; Clardy, J.; Finazzi-Agro, A.; et al. Transglutaminase 5 is regulated by Guanine-Adenine Nucleotides. Biochem. J. 2004, 381, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.S.; Slaughter, T.F.; Peoples, K.A.; Hettasch, J.M.; Greenberg, C.S. Regulation of Human Tissue Transglutaminase Function by Magnesium-Nucleotide Complexes. Identification of Distinct Binding Sites for mg-GTP and mg-ATP. J. Biol. Chem. 1998, 273, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Di Venere, A.; Rossi, A.; De Matteis, F.; Rosato, N.; Agro, A.F.; Mei, G. Opposite Effects of Ca(2+) and GTP Binding on Tissue Transglutaminase Tertiary Structure. J. Biol. Chem. 2000, 275, 3915–3921. [Google Scholar] [CrossRef] [PubMed]
- Lortat-Jacob, H.; Burhan, I.; Scarpellini, A.; Thomas, A.; Imberty, A.; Vives, R.R.; Johnson, T.; Gutierrez, A.; Verderio, E.A. Transglutaminase-2 Interaction with Heparin: Identification of a Heparin Binding Site that Regulates Cell Adhesion to Fibronectin-Transglutaminase-2 Matrix. J. Biol. Chem. 2012, 287, 18005–18017. [Google Scholar] [CrossRef] [PubMed]
- Boeshans, K.M.; Mueser, T.C.; Ahvazi, B. A Three-Dimensional Model of the Human Transglutaminase 1: Insights into the Understanding of Lamellar Ichthyosis. J. Mol. Model. 2007, 13, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.; Beck, K.; Adamczyk, M.; Aeschlimann, P.; Langley, M.; Oita, R.C.; Thiebach, L.; Hils, M.; Aeschlimann, D. Transglutaminase 6: A Protein Associated with Central Nervous System Development and Motor Function. Amino Acids 2013, 44, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.R.; Islam, S.A.; Sternberg, M.J.E. EzMol: A Web Server Wizard for the Rapid Visualization and Image Production of Protein and Nucleic Acid Structures. J. Mol. Biol. 2018, 430, 2244–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamnaes, J.; Pinkas, D.M.; Fleckenstein, B.; Khosla, C.; Sollid, L.M. Redox Regulation of Transglutaminase 2 Activity. J. Biol. Chem. 2010, 285, 25402–25409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boothe, R.L.; Folk, J.E. A Reversible, Calcium-Dependent, Copper-Catalyzed Inactivation of Guinea Pig Liver Transglutaminase. J. Biol. Chem. 1969, 244, 399–405. [Google Scholar] [PubMed]
- Connellan, J.M.; Folk, J.E. Mechanism of the Inactivation of Guinea Pig Liver Transglutaminase by 5,5′-Dithiobis-(2-Nitrobenzoic Acid). J. Biol. Chem. 1969, 244, 3173–3181. [Google Scholar] [PubMed]
- Jin, X.; Stamnaes, J.; Klock, C.; DiRaimondo, T.R.; Sollid, L.M.; Khosla, C. Activation of Extracellular Transglutaminase 2 by Thioredoxin. J. Biol. Chem. 2011, 286, 37866–37873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begg, G.E.; Carrington, L.; Stokes, P.H.; Matthews, J.M.; Wouters, M.A.; Husain, A.; Lorand, L.; Iismaa, S.E.; Graham, R.M. Mechanism of Allosteric Regulation of Transglutaminase 2 by GTP. Proc. Natl. Acad. Sci. USA 2006, 103, 19683–19688. [Google Scholar] [CrossRef] [PubMed]
- Pinkas, D.M.; Strop, P.; Brunger, A.T.; Khosla, C. Transglutaminase 2 Undergoes a Large Conformational Change upon Activation. PLoS Biol. 2007, 5, e327. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.; Strnad, P.; Watts, R.E.; Choi, K.; Jabri, B.; Omary, M.B.; Khosla, C. Extracellular Transglutaminase 2 is Catalytically Inactive, but is Transiently Activated upon Tissue Injury. PLoS ONE 2008, 3, e1861. [Google Scholar] [CrossRef] [PubMed]
- Akimov, S.S.; Krylov, D.; Fleischman, L.F.; Belkin, A.M. Tissue Transglutaminase is an Integrin-Binding Adhesion Coreceptor for Fibronectin. J. Cell Biol. 2000, 148, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Mycek, M.J.; Waelsch, H. The Enzymatic Deamidation of Proteins. J. Biol. Chem. 1960, 235, 3513–3517. [Google Scholar] [PubMed]
- Dieterich, W.; Ehnis, T.; Bauer, M.; Donner, P.; Volta, U.; Riecken, E.O.; Schuppan, D. Identification of Tissue Transglutaminase as the Autoantigen of Celiac Disease. Nat. Med. 1997, 3, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Molberg, O.; Mcadam, S.N.; Korner, R.; Quarsten, H.; Kristiansen, C.; Madsen, L.; Fugger, L.; Scott, H.; Noren, O.; Roepstorff, P.; et al. Tissue Transglutaminase Selectively Modifies Gliadin Peptides that are Recognized by Gut-Derived T Cells in Celiac Disease. Nat. Med. 1998, 4, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.S.; Erickson, J.W.; Cerione, R.A. Identification and Biochemical Characterization of an 80 Kilodalton GTP-Binding/Transglutaminase from Rabbit Liver Nuclei. Biochemistry 1995, 34, 15863–15871. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Murphy, L.J. Tissue Transglutaminase has Intrinsic Kinase Activity: Identification of Transglutaminase 2 as an Insulin-Like Growth Factor-Binding Protein-3 Kinase. J. Biol. Chem. 2004, 279, 23863–23868. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Saleh, A.; Espino, P.S.; Davie, J.R.; Murphy, L.J. Phosphorylation of Histones by Tissue Transglutaminase. J. Biol. Chem. 2006, 281, 5532–5538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Murphy, L.J. The p53 Oncoprotein is a Substrate for Tissue Transglutaminase Kinase Activity. Biochem. Biophys. Res. Commun. 2006, 339, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Melino, G.; Murphy, L.J. Transglutaminase 2 Kinase Activity Facilitates Protein Kinase A-Induced Phosphorylation of Retinoblastoma Protein. J. Biol. Chem. 2007, 282, 18108–18115. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, G.; Suwa, M.; Ichikawa, Y.; Ohtsuka, T.; Kumagai, S.; Kikuchi, M.; Sato, Y.; Saito, Y. A Novel Function of Tissue-Type Transglutaminase: Protein Disulphide Isomerase. Biochem. J. 2003, 373, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Mastroberardino, P.G.; Farrace, M.G.; Viti, I.; Pavone, F.; Fimia, G.M.; Melino, G.; Rodolfo, C.; Piacentini, M. “Tissue” Transglutaminase Contributes to the Formation of Disulphide Bridges in Proteins of Mitochondrial Respiratory Complexes. Biochim. Biophys. Acta 2006, 1757, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Kanaji, T.; Ozaki, H.; Takao, T.; Kawajiri, H.; Ide, H.; Motoki, M.; Shimonishi, Y. Primary Structure of Microbial Transglutaminase from Streptoverticillium Sp. Strain s-8112. J. Biol. Chem. 1993, 268, 11565–11572. [Google Scholar] [PubMed]
- Del Duca, S.; Beninati, S.; Serafini-Fracassini, D. Polyamines in Chloroplasts: Identification of their Glutamyl and Acetyl Derivatives. Biochem. J. 1995, 305 Pt 1, 233–237. [Google Scholar] [CrossRef]
- Makarova, K.S.; Aravind, L.; Galperin, M.Y.; Grishin, N.V.; Tatusov, R.L.; Wolf, Y.I.; Koonin, E.V. Comparative Genomics of the Archaea (Euryarchaeota): Evolution of Conserved Protein Families, the Stable Core, and the Variable Shell. Genome Res. 1999, 9, 608–628. [Google Scholar] [PubMed]
- Polakowska, R.R.; Eickbush, T.; Falciano, V.; Razvi, F.; Goldsmith, L.A. Organization and Evolution of the Human Epidermal Keratinocyte Transglutaminase I Gene. Proc. Natl. Acad. Sci. USA 1992, 89, 4476–4480. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, F.; Muta, T.; Iwanaga, S.; Ichinose, A.; Davie, E.W.; Kuma, K.; Miyata, T. Limulus Hemocyte Transglutaminase. cDNA Cloning, Amino Acid Sequence, and Tissue Localization. J. Biol. Chem. 1993, 268, 262–268. [Google Scholar] [PubMed]
- Ando, H.; Adachi, M.; Umeda, K.; Matsuura, A.; Nonaka, M.; Uchio, R.; Tanaka, H.; Motoki, M. Purification and Characteristics of a Novel Transglutaminase Derived from Microorganisms. Agric. Biol. Chem. 1989, 53, 2613–2617. [Google Scholar] [Green Version]
- Nonaka, M.; Tanaka, H.; Okiyama, A.; Motoki, M.; Ando, H.; Umeda, K.; Matsuura, A. Polymerization of several Proteins by Ca2 -Independent Transglutaminase Derived from Microorganisms. Agric. Biol. Chem. 1989, 53, 2619–2623. [Google Scholar]
- Kashiwagi, T.; Yokoyama, K.; Ishikawa, K.; Ono, K.; Ejima, D.; Matsui, H.; Suzuki, E. Crystal Structure of Microbial Transglutaminase from Streptoverticillium Mobaraense. J. Biol. Chem. 2002, 277, 44252–44260. [Google Scholar] [CrossRef] [PubMed]
- Fesus, L.; Metsis, M.L.; Muszbek, L.; Koteliansky, V.E. Transglutaminase-Sensitive Glutamine Residues of Human Plasma Fibronectin Revealed by Studying its Proteolytic Fragments. Eur. J. Biochem. 1986, 154, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Upchurch, H.F.; Conway, E.; Patterson, M., Jr.; Maxwell, M.D. Localization of Cellular Transglutaminase on the Extracellular Matrix after Wounding: Characteristics of the Matrix Bound Enzyme. J. Cell. Physiol. 1991, 149, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Nicholas, B.; Mian, S.; Davies, P.J.; Griffin, M. Reduced Expression of Tissue Transglutaminase in a Human Endothelial Cell Line Leads to Changes in Cell Spreading, Cell Adhesion and Reduced Polymerisation of Fibronectin. J. Cell Sci. 1997, 110, 2461–2472. [Google Scholar] [PubMed]
- Verderio, E.; Nicholas, B.; Gross, S.; Griffin, M. Regulated Expression of Tissue Transglutaminase in Swiss 3T3 Fibroblasts: Effects on the Processing of Fibronectin, Cell Attachment, and Cell Death. Exp. Cell Res. 1998, 239, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Sane, D.C.; Moser, T.L.; Pippen, A.M.; Parker, C.J.; Achyuthan, K.E.; Greenberg, C.S. Vitronectin is a Substrate for Transglutaminases. Biochem. Biophys. Res. Commun. 1988, 157, 115–120. [Google Scholar] [CrossRef]
- Martinez, J.; Rich, E.; Barsigian, C. Transglutaminase-Mediated Cross-Linking of Fibrinogen by Human Umbilical Vein Endothelial Cells. J. Biol. Chem. 1989, 264, 20502–20508. [Google Scholar] [PubMed]
- Aeschlimann, D.; Paulsson, M. Cross-Linking of Laminin-Nidogen Complexes by Tissue Transglutaminase. A Novel Mechanism for Basement Membrane Stabilization. J. Biol. Chem. 1991, 266, 15308–15317. [Google Scholar] [PubMed]
- Barsigian, C.; Stern, A.M.; Martinez, J. Tissue (Type II) Transglutaminase Covalently Incorporates itself, Fibrinogen, Or Fibronectin into High Molecular Weight Complexes on the Extracellular Surface of Isolated Hepatocytes. Use of 2-[(2-Oxopropyl)Thio] Imidazolium Derivatives as Cellular Transglutaminase Inactivators. J. Biol. Chem. 1991, 266, 22501–22509. [Google Scholar] [PubMed]
- Aeschlimann, D.; Kaupp, O.; Paulsson, M. Transglutaminase-Catalyzed Matrix Cross-Linking in Differentiating Cartilage: Identification of Osteonectin as a Major Glutaminyl Substrate. J. Cell Biol. 1995, 129, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Kleman, J.P.; Aeschlimann, D.; Paulsson, M.; van der Rest, M. Transglutaminase-Catalyzed Cross-Linking of Fibrils of Collagen V/XI in A204 Rhabdomyosarcoma Cells. Biochemistry 1995, 34, 13768–13775. [Google Scholar] [CrossRef] [PubMed]
- Kaartinen, M.T.; Pirhonen, A.; Linnala-Kankkunen, A.; Maenpaa, P.H. Transglutaminase-Catalyzed Cross-Linking of Osteopontin is inhibited by Osteocalcin. J. Biol. Chem. 1997, 272, 22736–22741. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.S.; Skill, N.J.; El Nahas, A.M.; Oldroyd, S.D.; Thomas, G.L.; Douthwaite, J.A.; Haylor, J.L.; Griffin, M. Transglutaminase Transcription and Antigen Translocation in Experimental Renal Scarring. J. Am. Soc. Nephrol. 1999, 10, 2146–2157. [Google Scholar] [PubMed]
- Chau, D.Y.; Collighan, R.J.; Verderio, E.A.; Addy, V.L.; Griffin, M. The Cellular Response to Transglutaminase-Cross-Linked Collagen. Biomaterials 2005, 26, 6518–6529. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Kotsakis, P.; Johnson, T.S.; Chau, D.Y.; Ali, S.; Melino, G.; Griffin, M. Matrix Changes Induced by Transglutaminase 2 Lead to Inhibition of Angiogenesis and Tumor Growth. Cell Death Differ. 2006, 13, 1442–1453. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.S.; Griffin, M.; Thomas, G.L.; Skill, J.; Cox, A.; Yang, B.; Nicholas, B.; Birckbichler, P.J.; Muchaneta-Kubara, C.; Meguid El Nahas, A. The Role of Transglutaminase in the Rat Subtotal Nephrectomy Model of Renal Fibrosis. J. Clin. Investig. 1997, 99, 2950–2960. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.S.; El-Koraie, A.F.; Skill, N.J.; Baddour, N.M.; El Nahas, A.M.; Njloma, M.; Adam, A.G.; Griffin, M. Tissue Transglutaminase and the Progression of Human Renal Scarring. J. Am. Soc. Nephrol. 2003, 14, 2052–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burhan, I.; Furini, G.; Lortat-Jacob, H.; Atobatele, A.G.; Scarpellini, A.; Schroeder, N.; Atkinson, J.; Maamra, M.; Nutter, F.H.; Watson, P.; et al. Interplay between Transglutaminases and Heparan Sulphate in Progressive Renal Scarring. Sci. Rep. 2016, 6, 31343. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Smith, L.L.; Wynne, J. Changes in Transglutaminase Activity in an Experimental Model of Pulmonary Fibrosis Induced by Paraquat. Br. J. Exp. Pathol. 1979, 60, 653–661. [Google Scholar] [PubMed]
- Richards, R.J.; Masek, L.C.; Brown, R.F. Biochemical and Cellular Mechanisms of Pulmonary Fibrosis. Toxicol. Pathol. 1991, 19, 526–539. [Google Scholar] [PubMed]
- Oh, K.; Park, H.B.; Byoun, O.J.; Shin, D.M.; Jeong, E.M.; Kim, Y.W.; Kim, Y.S.; Melino, G.; Kim, I.G.; Lee, D.S. Epithelial Transglutaminase 2 is Needed for T Cell Interleukin-17 Production and Subsequent Pulmonary Inflammation and Fibrosis in Bleomycin-Treated Mice. J. Exp. Med. 2011, 208, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.C.; Sapinoro, R.E.; Kottmann, R.M.; Kulkarni, A.A.; Iismaa, S.E.; Johnson, G.V.; Thatcher, T.H.; Phipps, R.P.; Sime, P.J. Transglutaminase 2 and its Role in Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2011, 184, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.; Liu, S.L.; Frizell, E.; Zhu, J.; Maddukuri, S.; Martinez, J.; Davies, P.; Schwarting, R.; Norton, P.; Zern, M.A. A Role for Tissue Transglutaminase in Hepatic Injury and Fibrogenesis, and its Regulation by NF-κB. Am. J. Physiol. 1997. [Google Scholar] [CrossRef]
- Grenard, P.; Bresson-Hadni, S.; El Alaoui, S.; Chevallier, M.; Vuitton, D.A.; Ricard-Blum, S. Transglutaminase-Mediated Cross-Linking is Involved in the Stabilization of Extracellular Matrix in Human Liver Fibrosis. J. Hepatol. 2001, 35, 367–375. [Google Scholar] [CrossRef]
- Tatsukawa, H.; Tani, Y.; Otsu, R.; Nakagawa, H.; Hitomi, K. Global Identification and Analysis of Isozyme-Specific Possible Substrates Crosslinked by Transglutaminases using Substrate Peptides in Mouse Liver Fibrosis. Sci. Rep. 2017, 7, 45049. [Google Scholar] [CrossRef] [PubMed]
- Small, K.; Feng, J.F.; Lorenz, J.; Donnelly, E.T.; Yu, A.; Im, M.J.; Dorn, G.W., 2nd; Liggett, S.B. Cardiac Specific Overexpression of Transglutaminase II (G(H)) Results in a Unique Hypertrophy Phenotype Independent of Phospholipase C Activation. J. Biol. Chem. 1999, 274, 21291–21296. [Google Scholar] [CrossRef] [PubMed]
- Shinde, A.V.; Dobaczewski, M.; de Haan, J.J.; Saxena, A.; Lee, K.K.; Xia, Y.; Chen, W.; Su, Y.; Hanif, W.; Kaur Madahar, I.; et al. Tissue Transglutaminase Induction in the Pressure-Overloaded Myocardium Regulates Matrix Remodelling. Cardiovasc. Res. 2017, 113, 892–905. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Stuckey, D.J.; Murdoch, C.E.; Camelliti, P.; Lip, G.Y.H.; Griffin, M. Cardiac Fibrosis can be Attenuated by Blocking the Activity of Transglutaminase 2 using a Selective Small-Molecule Inhibitor. Cell Death Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Cui, C.; Song, A.; Myneni, V.D.; Sun, H.; Li, J.J.; Murshed, M.; Melino, G.; Kaartinen, M.T. Transglutaminases Factor XIII-A and TG2 Regulate Resorption, Adipogenesis and Plasma Fibronectin Homeostasis in Bone and Bone Marrow. Cell Death Differ. 2017, 24, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Tatsukawa, H.; Otsu, R.; Tani, Y.; Wakita, R.; Hitomi, K. Isozyme-Specific Comprehensive Characterization of Transglutaminase-Crosslinked Substrates in Kidney Fibrosis. Sci. Rep. 2018, 8, 7306. [Google Scholar] [CrossRef] [PubMed]
- Zemskov, E.A.; Mikhailenko, I.; Hsia, R.C.; Zaritskaya, L.; Belkin, A.M. Unconventional Secretion of Tissue Transglutaminase Involves Phospholipid-Dependent Delivery into Recycling Endosomes. PLoS ONE 2011, 6, e19414. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, M.; Griffiths, R.; Dewitt, S.; Knauper, V.; Aeschlimann, D. P2X7 Receptor Activation Regulates Rapid Unconventional Export of Transglutaminase-2. J. Cell Sci. 2015, 128, 4615–4628. [Google Scholar] [CrossRef] [PubMed]
- Aeschlimann, D.; Knauper, V. P2X7 Receptor-Mediated TG2 Externalization: A Link to Inflammatory Arthritis? Amino Acids 2017, 49, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, A.; Germack, R.; Lortat-Jacob, H.; Muramatsu, T.; Billett, E.; Johnson, T.; Verderio, E.A. Heparan Sulfate Proteoglycans are Receptors for the Cell-Surface Trafficking and Biological Activity of Transglutaminase-2. J. Biol. Chem. 2009, 284, 18411–18423. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Collighan, R.J.; Pytel, K.; Rathbone, D.L.; Li, X.; Griffin, M. Characterization of Heparin-Binding Site of Tissue Transglutaminase: Its Importance in Cell Surface Targeting, Matrix Deposition, and Cell Signaling. J. Biol. Chem. 2012, 287, 13063–13083. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, A.; Huang, L.; Burhan, I.; Schroeder, N.; Funck, M.; Johnson, T.S.; Verderio, E.A. Syndecan-4 Knockout Leads to Reduced Extracellular Transglutaminase-2 and Protects Against Tubulointerstitial Fibrosis. J. Am. Soc. Nephrol. 2014, 25, 1013–1027. [Google Scholar] [CrossRef] [PubMed]
- Antonyak, M.A.; Li, B.; Boroughs, L.K.; Johnson, J.L.; Druso, J.E.; Bryant, K.L.; Holowka, D.A.; Cerione, R.A. Cancer Cell-Derived Microvesicles Induce Transformation by Transferring Tissue Transglutaminase and Fibronectin to Recipient Cells. Proc. Natl. Acad. Sci. USA 2011, 108, 4852–4857. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Hidalgo, L.; Altuntas, S.; Rossin, F.; D’Eletto, M.; Marsella, C.; Farrace, M.G.; Falasca, L.; Antonioli, M.; Fimia, G.M.; Piacentini, M. Transglutaminase Type 2-Dependent Selective Recruitment of Proteins into Exosomes Under Stressful Cellular Conditions. Biochim. Biophys. Acta 2016, 1863, 2084–2092. [Google Scholar] [CrossRef] [PubMed]
- Furini, G.; Schroeder, N.; Huang, L.; Boocock, D.; Scarpellini, A.; Coveney, C.; Tonoli, E.; Ramaswamy, R.; Ball, G.; Verderio, C.; et al. Proteomic Profiling Reveals the Transglutaminase-2 Externalization Pathway in Kidneys After Unilateral Ureteric Obstruction. J. Am. Soc. Nephrol. 2018, 29, 880–905. [Google Scholar] [CrossRef] [PubMed]
- Verderio, E.A.; Telci, D.; Okoye, A.; Melino, G.; Griffin, M. A Novel RGD-Independent Cel Adhesion Pathway Mediated by Fibronectin-Bound Tissue Transglutaminase Rescues Cells from Anoikis. J. Biol. Chem. 2003, 278, 42604–42614. [Google Scholar] [CrossRef] [PubMed]
- Telci, D.; Wang, Z.; Li, X.; Verderio, E.A.; Humphries, M.J.; Baccarini, M.; Basaga, H.; Griffin, M. Fibronectin-Tissue Transglutaminase Matrix Rescues RGD-Impaired Cell Adhesion through Syndecan-4 and Beta1 Integrin Co-Signaling. J. Biol. Chem. 2008, 283, 20937–20947. [Google Scholar] [CrossRef] [PubMed]
- Teesalu, K.; Uibo, O.; Uibo, R.; Utt, M. Kinetic and Functional Characterisation of the Heparin-binding Peptides from Human Transglutaminase 2. J. Pept. Sci. 2012, 18, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Coussons, P.J.; Price, N.C.; Kelly, S.M.; Smith, B.; Sawyer, L. Factors that Govern the Specificity of Transglutaminase-Catalysed Modification of Proteins and Peptides. Biochem. J. 1992, 282 Pt 3, 929–930. [Google Scholar] [CrossRef]
- Sugimura, Y.; Hosono, M.; Wada, F.; Yoshimura, T.; Maki, M.; Hitomi, K. Screening for the Preferred Substrate Sequence of Transglutaminase using a Phage-Displayed Peptide Library: Identification of Peptide Substrates for TGASE 2 and Factor XIIIA. J. Biol. Chem. 2006, 281, 17699–17706. [Google Scholar] [CrossRef] [PubMed]
- Keresztessy, Z.; Csosz, E.; Harsfalvi, J.; Csomos, K.; Gray, J.; Lightowlers, R.N.; Lakey, J.H.; Balajthy, Z.; Fesus, L. Phage Display Selection of Efficient Glutamine-Donor Substrate Peptides for Transglutaminase 2. Protein Sci. 2006, 15, 2466–2480. [Google Scholar] [CrossRef] [PubMed]
- Malesevic, M.; Migge, A.; Hertel, T.C.; Pietzsch, M. A Fluorescence-Based Array Screen for Transglutaminase Substrates. Chembiochem 2015, 16, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Caporale, A.; Selis, F.; Sandomenico, A.; Jotti, G.S.; Tonon, G.; Ruvo, M. The LQSP Tetrapeptide is a New Highly Efficient Substrate of Microbial Transglutaminase for the Site-Specific Derivatization of Peptides and Proteins. Biotechnol. J. 2015, 10, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Csosz, E.; Mesko, B.; Fesus, L. Transdab Wiki: The Interactive Transglutaminase Substrate Database on Web 2.0 Surface. Amino Acids 2009, 36, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Facchiano, A.M.; Facchiano, A.; Facchiano, F. Active Sequences Collection (ASC) Database: A New Tool to Assign Functions to Protein Sequences. Nucleic Acids Res. 2003, 31, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Kawamoto, T.; Tatsukawa, H.; Kojima, S.; Yamanishi, K.; Hitomi, K. In Situ Detection of Active Transglutaminases for Keratinocyte Type (TGase 1) and Tissue Type (TGase 2) using Fluorescence-Labeled Highly Reactive Substrate Peptides. J. Histochem. Cytochem. 2011, 59, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Tsunoda, K.; Itoh, M.; Fukui, M.; Mori, H.; Hitomi, K. Transglutaminase 2 and Factor XIII Catalyze Distinct Substrates in Differentiating Osteoblastic Cell Line: Utility of Highly Reactive Substrate Peptides. Amino Acids 2013, 44, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Feeney, R.E.; Whitaker, J.R. Food Proteins. Lmprovement through Chemical and Enzymatic Modification. Chem. Inform. 1977, 8, 95. [Google Scholar]
- Motoki, M.; Nio, N.; Takinami, K. Functional Properties of Food Proteins Polymerized by Transglutaminase. Agric. Biol. Chem. 1984, 48, 1257–1261. [Google Scholar] [Green Version]
- Nio, N.; Motoki, M.; Takinami, K. Gelation of Casein and Soybean Globulins by Transglutaminase. Agric. Biol. Chem. 1985, 49, 2283–2286. [Google Scholar] [Green Version]
- Nonaka, M.; Sakamoto, H.; Toiguchi, S.; Kawajiri, H.; Soeda, T.; Motoki, M. Sodium Caseinate and Skim Milk Gels Formed by Incubation with Microbial Transglutaminase. J. Food Sci. 1992, 57, 1214–1241. [Google Scholar] [CrossRef]
- Ikura, K.; Yoshikawa, M.; Sasaki, R.; Chiba, H. Incorporation of Amino Acids into Food Proteins by Transglutaminase. Agric. Biol. Chem. 1981, 45, 2587–2592. [Google Scholar] [Green Version]
- Kurth, L.; Rogers, P. Transglutaminase Catalyzed Cross-linking of Myosin to Soya Protein, Casein and Gluten. J. Food Sci. 1984, 49, 573–576. [Google Scholar] [CrossRef]
- Aboumahmoud, R.; Savello, P. Crosslinking of Whey Protein by Transglutaminase. J. Dairy Sci. 1990, 73, 256–263. [Google Scholar] [CrossRef]
- Ikura, K.; Kometani, T.; Yoshikawa, M.; Sasaki, R.; Chiba, H. Crosslinking of Casein Components by Transglutaminase. Agric. Biol. Chem. 1980, 44, 1567–1573. [Google Scholar] [Green Version]
- Motoki, M.; Nio, N. Crosslinking between Different Food Proteins by Transglutaminase. J. Food Sci. 1983, 48, 561–566. [Google Scholar] [CrossRef]
- Bercovici, D.; Gaertner, H.F.; Puigserver, A.J. Transglutaminase-Catalyzed Incorporation of Lysine Oligomers into Casein. J. Agric. Food Chem. 1987, 35, 301–304. [Google Scholar] [CrossRef]
- Ikura, K.; Kometani, T.; Sasaki, R.; Chiba, H. Crosslinking of Soybean 7S and 11S Proteins by Transglutaminase. Agric. Biol. Chem. 1980, 44, 2979–2984. [Google Scholar] [Green Version]
- Alexandre, M.C.; Popineau, Y.; Viroben, G.; Chiarello, M.; Lelion, A.; Gueguen, J. Wheat. Gamma. Gliadin as Substrate for Bovine Plasma Factor XIII. J. Agric. Food Chem. 1993, 41, 2208–2214. [Google Scholar] [CrossRef]
- Gerrard, J.; Fayle, S.; Wilson, A.; Newberry, M.; Ross, M.; Kavale, S. Dough Properties and Crumb Strength of White Pan Bread as Affected by Microbial Transglutaminase. J. Food Sci. 1998, 63, 472–475. [Google Scholar] [CrossRef]
- Cohen, I.; Young-Bandala, L.; Blankenberg, T.A.; Siefring, G.E., Jr.; Bruner-Lorand, J. Fibrinoligase-Catalyzed Cross-Linking of Myosin from Platelet and Skeletal Muscle. Arch. Biochem. Biophys. 1979, 192, 100–111. [Google Scholar] [CrossRef]
- Kahn, D.R.; Cohen, I. Factor XIIIa-Catalyzed Coupling of Structural Proteins. Biochim. Biophys. Acta 1981, 668, 490–494. [Google Scholar] [CrossRef]
- Giosafatto, C.; Rigby, N.; Wellner, N.; Ridout, M.; Husband, F.; Mackie, A. Microbial Transglutaminase-Mediated Modification of Ovalbumin. Food Hydrocoll. 2012, 26, 261–267. [Google Scholar] [CrossRef]
- Seki, N.; Uno, H.; Lee, N.H.; Kimura, I.; Toyoda, K.; Fujita, T.; Arai, K. Transglutaminase Activity in Alaska Pollack Muscle and Surimi [Minced Fish Meat], and Its Reaction with Myosin B [Purified from Carp]. In Bulletin of the Japanese Society of Scientific Fisheries; JSFS: Tokyo, Japan, 1990. [Google Scholar]
- Maruyama, N.; Nozawa, H.; Kimura, I.; Satake, M.; Seki, N. Transglutaminase-Induced Polymerization of a Mixture of Diffrent Fish Myosins. Fish. Sci. 1995, 61, 495–500. [Google Scholar] [CrossRef]
- Kuraishi, C.; Sakamoto, J.; Yamazaki, K.; Susa, Y.; Kuhara, C.; Soeda, T. Production of Restructured Meat using Microbial Transglutaminase without Salt Or Cooking. J. Food Sci. 1997, 62, 488–490. [Google Scholar] [CrossRef]
- Ahhmed, A.M.; Kuroda, R.; Kawahara, S.; Ohta, K.; Nakade, K.; Aoki, T.; Muguruma, M. Dependence of Microbial Transglutaminase on Meat Type in Myofibrillar Proteins Cross-Linking. Food Chem. 2009, 112, 354–361. [Google Scholar] [CrossRef]
- Canto, A.C.; Lima, B.R.; Suman, S.P.; Lazaro, C.A.; Monteiro, M.L.; Conte-Junior, C.A.; Freitas, M.Q.; Cruz, A.G.; Santos, E.B.; Silva, T.J. Physico-Chemical and Sensory Attributes of Low-Sodium Restructured Caiman Steaks Containing Microbial Transglutaminase and Salt Replacers. Meat Sci. 2014, 96, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Lesiow, T.; Rentfrow, G.K.; Xiong, Y.L. Polyphosphate and Myofibrillar Protein Extract Promote Transglutaminase-Mediated Enhancements of Rheological and Textural Properties of PSE Pork Meat Batters. Meat Sci. 2017, 128, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiong, Y.L.; Sato, H. Rheological Enhancement of Pork Myofibrillar Protein–Lipid Emulsion Composite Gels Via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway. J. Agric. Food Chem. 2017, 65, 8451–8458. [Google Scholar] [CrossRef] [PubMed]
- Sorapukdee, S.; Tangwatcharin, P. Quality of Steak Restructured from Beef Trimmings Containing Microbial Transglutaminase and Impacted by Freezing and Grading by Fat Level. Asian-Aust. J. Anim. Sci. 2018, 31, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Lauber, S.; Henle, T.; Klostermeyer, H. Relationship between the Crosslinking of Caseins by Transglutaminase and the Gel Strength of Yoghurt. Eur. Food Res. Technol. 2000, 210, 305–309. [Google Scholar] [CrossRef]
- Abou-Soliman, N.H.I.; Sakr, S.S.; Awad, S. Physico-Chemical, Microstructural and Rheological Properties of Camel-Milk Yogurt as Enhanced by Microbial Transglutaminase. J. Food Sci. Technol. 2017, 54, 1616–1627. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gomez, B.; Romero-Rodriguez, A.; Vazquez-Oderiz, L.; Munoz-Ferreiro, N.; Vazquez, M. Physicochemical Evaluation of Low-Fat Yoghurt Produced with Microbial Transglutaminase. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef] [PubMed]
- Caballero, P.A.; Gómez, M.; Rosell, C.M. Improvement of Dough Rheology, Bread Quality and Bread Shelf-Life by Enzymes Combination. J. Food Eng. 2007, 81, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Marco, C.; Rosell, C.M. Breadmaking Performance of Protein Enriched, Gluten-Free Breads. Eur. Food Res. Technol. 2008, 227, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Li, L.; Wang, F.; Wan, J.; Tilley, M.; Ren, C.; Wu, S. Effects of Transglutaminase on the Rheological and Mixolab Thermomechanical Characteristics of Oat Dough. Food Chem. 2010, 121, 934–939. [Google Scholar] [CrossRef]
- Grossmann, I.; Doring, C.; Jekle, M.; Becker, T.; Koehler, P. Compositional Changes and Baking Performance of Rye Dough as Affected by Microbial Transglutaminase and Xylanase. J. Agric. Food Chem. 2016, 64, 5751–5758. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Hou, G.G.; Kindelspire, J.; Krishnan, P.; Zhao, S. Microstructural, Textural, and Sensory Properties of Whole-Wheat Noodle Modified by Enzymes and Emulsifiers. Food Chem. 2017, 223, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Hadjivassiliou, M.; Aeschlimann, P.; Strigun, A.; Sanders, D.S.; Woodroofe, N.; Aeschlimann, D. Autoantibodies in Gluten Ataxia Recognize a Novel Neuronal Transglutaminase. Ann. Neurol. 2008, 64, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Chavez, F.; Rouzaud-Sandez, O.; Sotelo-Cruz, N.; Calderon de la Barca, A.M. Transglutaminase Treatment of Wheat and Maize Prolamins of Bread Increases the Serum IgA Reactivity of Celiac Disease Patients. J. Agric. Food Chem. 2008, 56, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Ruh, T.; Ohsam, J.; Pasternack, R.; Yokoyama, K.; Kumazawa, Y.; Hils, M. Microbial Transglutaminase Treatment in Pasta-Production does Not Affect the Immunoreactivity of Gliadin with Celiac Disease Patients’ Sera. J. Agric. Food Chem. 2014, 62, 7604–7611. [Google Scholar] [CrossRef] [PubMed]
- Heil, A.; Ohsam, J.; van Genugten, B.; Diez, O.; Yokoyama, K.; Kumazawa, Y.; Pasternack, R.; Hils, M. Microbial Transglutaminase used in Bread Preparation at Standard Bakery Concentrations does Not Increase Immunodetectable Amounts of Deamidated Gliadin. J. Agric. Food Chem. 2017, 65, 6982–6990. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, P.; Chico, B.; Villalonga, R.; Mariniello, L.; Damiao, A.; Masi, P.; Porta, R. Chitosan-Whey Protein Edible Films Produced in the Absence Or Presence of Transglutaminase: Analysis of their Mechanical and Barrier Properties. Biomacromolecules 2006, 7, 744–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pierro, P.; Sorrentino, A.; Mariniello, L.; Giosafatto, C.V.L.; Porta, R. Chitosan/Whey Protein Film as Active Coating to Extend Ricotta Cheese Shelf-Life. LWT Food Sci. Technol. 2011, 44, 2324–2327. [Google Scholar] [CrossRef]
- Lee, H.; Lanier, T.; Hamann, D.; Knopp, J. Transglutaminase Effects on Low Temperature Gelation of Fish Protein Sols. J. Food Sci. 1997, 62, 20–24. [Google Scholar] [CrossRef]
- Fernandez-Dıaz, M.; Montero, P.; Gomez-Guillen, M. Gel Properties of Collagens from Skins of Cod (Gadus Morhua) and Hake (Merluccius Merluccius) and their Modification by the Coenhancers Magnesium Sulphate, Glycerol and Transglutaminase. Food Chem. 2001, 74, 161–167. [Google Scholar] [CrossRef]
- Al-Hassan, A.; Norziah, M. Effect of Transglutaminase Induced Crosslinking on the Properties of Starch/Gelatin Films. Food Packag. Shelf Life 2017, 13, 15–19. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.C.; Shangguan, X.; Wang, H.; Zhang, N.; Zhang, L.; Sha, X. Gelation Kinetics and Characterization of Enzymatically Enhanced Fish Scale Gelatin-Pectin Coacervate. J. Sci. Food Agric. 2018, 98, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.K.; Gottardi, D.; Ndagijimana, M.; Betti, M. Glycation and Transglutaminase Mediated Glycosylation of Fish Gelatin Peptides with Glucosamine Enhance Bioactivity. Food Chem. 2014, 142, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Taira, T.; Noishiki, Y. Collagen Engineering for Biomaterial Use. Clin. Mater. 1992, 9, 139–148. [Google Scholar] [CrossRef]
- Rath, N.C.; Reddi, A.H. Collagenous Bone Matrix is a Local Mitogen. Nature 1979, 278, 855–857. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, H.K.; Klebe, R.J.; Martin, G.R. Role of Collagenous Matrices in the Adhesion and Growth of Cells. J. Cell Biol. 1981, 88, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Nimni, M.E. A Defect in the Intramolecular and Intermolecular Cross-Linking of Collagen Caused by Penicillamine. I. Metabolic and Functional Abnormalities in Soft Tissues. J. Biol. Chem. 1968, 243, 1457–1466. [Google Scholar] [PubMed]
- Damink, L.O.; Dijkstra, P.J.; Van Luyn, M.; Van Wachem, P.; Nieuwenhuis, P.; Feijen, J. Glutaraldehyde as a Crosslinking Agent for Collagen-Based Biomaterials. J. Mater. Sci. Mater. Med. 1995, 6, 460–472. [Google Scholar] [CrossRef]
- Speer, D.P.; Chvapil, M.; Eskelson, C.D.; Ulreich, J. Biological Effects of Residual Glutaraldehyde in Glutaraldehyde-Tanned Collagen Biomaterials. J. Biomed. Mater. Res. 1980, 14, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Huang-Lee, L.L.; Cheung, D.T.; Nimni, M.E. Biochemical Changes and Cytotoxicity Associated with the Degradation of Polymeric Glutaraldehyde Derived Crosslinks. J. Biomed. Mater. Res. 1990, 24, 1185–1201. [Google Scholar] [CrossRef] [PubMed]
- Crescenzi, V.; Francescangeli, A.; Taglienti, A. New Gelatin-Based Hydrogels via Enzymatic Networking. Biomacromolecules 2002, 3, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wen, H.; Rao, Z.; Zhu, C.; Liu, M.; Min, L.; Fan, L.; Tao, S. Preparation and Characterization of Chitosan—Collagen Peptide/Oxidized Konjac Glucomannan Hydrogel. Int. J. Biol. Macromol. 2018, 108, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Valero, C.; Amaveda, H.; Mora, M.; Garcia-Aznar, J.M. Combined Experimental and Computational Characterization of Crosslinked Collagen-Based Hydrogels. PLoS ONE 2018, 13, e0195820. [Google Scholar] [CrossRef] [PubMed]
- Mosher, D.F.; Schad, P.E. Cross-Linking of Fibronectin to Collagen by Blood Coagulation Factor XIIIa. J. Clin. Investig. 1979, 64, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Stachel, I.; Schwarzenbolz, U.; Henle, T.; Meyer, M. Cross-Linking of Type I Collagen with Microbial Transglutaminase: Identification of Cross-Linking Sites. Biomacromolecules 2010, 11, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Bowness, J.M.; Folk, J.E.; Timpl, R. Identification of a Substrate Site for Liver Transglutaminase on the Aminopropeptide of Type III Collagen. J. Biol. Chem. 1987, 262, 1022–1024. [Google Scholar] [PubMed]
- Shanmugasundaram, S.; Logan-Mauney, S.; Burgos, K.; Nurminskaya, M. Tissue Transglutaminase Regulates Chondrogenesis in Mesenchymal Stem Cells on Collagen Type XI Matrices. Amino Acids 2012, 42, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Halloran, D.M.; Collighan, R.J.; Griffin, M.; Pandit, A.S. Characterization of a Microbial Transglutaminase Cross-Linked Type II Collagen Scaffold. Tissue Eng. 2006, 12, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Orban, J.M.; Wilson, L.B.; Kofroth, J.A.; El-Kurdi, M.S.; Maul, T.M.; Vorp, D.A. Crosslinking of Collagen Gels by Transglutaminase. J. Biomed. Mater. Res. Part A 2004, 68, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xiao, Z.; Long, H.; Ma, K.; Zhang, J.; Ren, X.; Zhang, J. Assessment of the Characteristics and Biocompatibility of Gelatin Sponge Scaffolds Prepared by various Crosslinking Methods. Sci. Rep. 2018, 8, 1616. [Google Scholar] [CrossRef] [PubMed]
- Verderio, E.; Coombes, A.; Jones, R.A.; Li, X.; Heath, D.; Downes, S.; Griffin, M. Role of the Cross-Linking Enzyme Tissue Transglutaminase in the Biological Recognition of Synthetic Biodegradable Polymers. J. Biomed. Mater. Res. 2001, 54, 294–304. [Google Scholar] [CrossRef]
- Zhao, L.; Li, X.; Zhao, J.; Ma, S.; Ma, X.; Fan, D.; Zhu, C.; Liu, Y. A Novel Smart Injectable Hydrogel Prepared by Microbial Transglutaminase and Human-Like Collagen: Its Characterization and Biocompatibility. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.N.; Ho, H.O.; Sheu, M.T. Characterization of Collagen Matrices Crosslinked using Microbial Transglutaminase. Biomaterials 2005, 26, 4229–4235. [Google Scholar] [CrossRef] [PubMed]
- Chau, D.Y.; Brown, S.V.; Mather, M.L.; Hutter, V.; Tint, N.L.; Dua, H.S.; Rose, F.R.; Ghaemmaghami, A.M. Tissue Transglutaminase (TG-2) Modified Amniotic Membrane: A Novel Scaffold for Biomedical Applications. Biomed. Mater. 2012. [Google Scholar] [CrossRef] [PubMed]
- Hoac, B.; Nelea, V.; Jiang, W.; Kaartinen, M.T.; McKee, M.D. Mineralization-Inhibiting Effects of Transglutaminase-Crosslinked Polymeric Osteopontin. Bone 2017, 101, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Cavelier, S.; Dastjerdi, A.K.; McKee, M.D.; Barthelat, F. Bone Toughness at the Molecular Scale: A Model for Fracture Toughness using Crosslinked Osteopontin on Synthetic and Biogenic Mineral Substrates. Bone 2018, 110, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Brand, D.; Fairbank, J.; Ye, H.; Lavy, C.; Czernuszka, J. A Self-Organising Biomimetic Collagen/Nano-Hydroxyapatite-Glycosaminoglycan Scaffold for Spinal Fusion. J. Mater. Sci. 2017, 52, 12574–12592. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, D.; Chau, D.Y.; Wang, Z.; Collighan, R.J.; Griffin, M. Cross-Linking of Collagen I by Tissue Transglutaminase Provides a Promising Biomaterial for Promoting Bone Healing. Amino Acids 2014, 46, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- Paige, K.T.; Cima, L.G.; Yaremchuk, M.J.; Vacanti, J.P.; Vacanti, C.A. Injectable Cartilage. Plast. Reconstr. Surg. 1995, 96, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Smeds, K.A.; Pfister-Serres, A.; Miki, D.; Dastgheib, K.; Inoue, M.; Hatchell, D.L.; Grinstaff, M.W. Photocrosslinkable Polysaccharides for in Situ Hydrogel Formation. J. Biomed. Mater. Res. 2001, 54, 115–121. [Google Scholar] [CrossRef]
- Nettles, D.L.; Vail, T.P.; Morgan, M.T.; Grinstaff, M.W.; Setton, L.A. Photocrosslinkable Hyaluronan as a Scaffold for Articular Cartilage Repair. Ann. Biomed. Eng. 2004, 32, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Ehrbar, M.; Metters, A.; Zammaretti, P.; Hubbell, J.A.; Zisch, A.H. Endothelial Cell Proliferation and Progenitor Maturation by Fibrin-Bound VEGF Variants with Differential Susceptibilities to Local Cellular Activity. J. Control. Release 2005, 101, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Yung, C.W.; Wu, L.Q.; Tullman, J.A.; Payne, G.F.; Bentley, W.E.; Barbari, T.A. Transglutaminase Crosslinked Gelatin as a Tissue Engineering Scaffold. J. Biomed. Mater. Res. Part A 2007, 83, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Ranga, A.; Lutolf, M.P.; Hilborn, J.; Ossipov, D.A. Hyaluronic Acid Hydrogels Formed in Situ by Transglutaminase-Catalyzed Reaction. Biomacromolecules 2016, 17, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Panitch, A.; Yamaoka, T.; Fournier, M.J.; Mason, T.L.; Tirrell, D.A. Design and Biosynthesis of Elastin-Like Artificial Extracellular Matrix Proteins Containing Periodically Spaced Fibronectin CS5 Domains. Macromolecules 1999, 32, 1701–1703. [Google Scholar] [CrossRef]
- Welsh, E.R.; Tirrell, D.A. Engineering the Extracellular Matrix: A Novel Approach to Polymeric Biomaterials. I. Control of the Physical Properties of Artificial Protein Matrices Designed to Support Adhesion of Vascular Endothelial Cells. Biomacromolecules 2000, 1, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Betre, H.; Setton, L.A.; Meyer, D.E.; Chilkoti, A. Characterization of a Genetically Engineered Elastin-Like Polypeptide for Cartilaginous Tissue Repair. Biomacromolecules 2002, 3, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Heilshorn, S.C.; DiZio, K.A.; Welsh, E.R.; Tirrell, D.A. Endothelial Cell Adhesion to the Fibronectin CS5 Domain in Artificial Extracellular Matrix Proteins. Biomaterials 2003, 24, 4245–4252. [Google Scholar] [CrossRef]
- Bandiera, A. Transglutaminase-Catalyzed Preparation of Human Elastin-Like Polypeptide-Based Three-Dimensional Matrices for Cell Encapsulation. Enzym. Microb. Technol. 2011, 49, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Bozzini, S.; Giuliano, L.; Altomare, L.; Petrini, P.; Bandiera, A.; Conconi, M.T.; Fare, S.; Tanzi, M.C. Enzymatic Cross-Linking of Human Recombinant Elastin (HELP) as Biomimetic Approach in Vascular Tissue Engineering. J. Mater. Sci. Mater. Med. 2011, 22, 2641–2650. [Google Scholar] [CrossRef] [PubMed]
- McHale, M.K.; Setton, L.A.; Chilkoti, A. Synthesis and in Vitro Evaluation of Enzymatically Cross-Linked Elastin-Like Polypeptide Gels for Cartilaginous Tissue Repair. Tissue Eng. 2005, 11, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
- Jurgensen, K.; Aeschlimann, D.; Cavin, V.; Genge, M.; Hunziker, E. A New Biological Glue for Cartilage-Cartilage Interfaces: Tissue Transglutaminase. JBJS 1997, 79, 185–193. [Google Scholar] [CrossRef]
- Kim, Y.; Gill, E.E.; Liu, J.C. Enzymatic Cross-Linking of Resilin-Based Proteins for Vascular Tissue Engineering Applications. Biomacromolecules 2016, 17, 2530–2539. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Smiddy, M.A.; de Kruif, C.G. Biocompatible Micro-Gel Particles from Cross-Linked Casein Micelles. Biomacromolecules 2007, 8, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; de Kruif, C.G. Structure and Stability of Nanogel Particles Prepared by Internal Cross-Linking of Casein Micelles. Int. Dairy J. 2008, 18, 556–565. [Google Scholar] [CrossRef]
- Zhang, Z.; Decker, E.A.; McClements, D.J. Encapsulation, Protection, and Release of Polyunsaturated Lipids using Biopolymer-Based Hydrogel Particles. Food Res. Int. 2014, 64, 520–526. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Designing Biopolymer Microgels to Encapsulate, Protect and Deliver Bioactive Components: Physicochemical Aspects. Adv. Colloid Interface Sci. 2017, 240, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.M.; Hou, S.P.; Ma, J.; Zhang, C.L.; Xu, Q.Y.; Lee, I.S.; Li, H.D.; Spector, M.; Cui, F.Z. Hyaluronic Acid-Poly-d-Lysine-Based Three-Dimensional Hydrogel for Traumatic Brain Injury. Tissue Eng. 2005, 11, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Tian, W.M.; Hou, S.P.; Xu, Q.Y.; Spector, M.; Cui, F.Z. An Experimental Test of Stroke Recovery by Implanting a Hyaluronic Acid Hydrogel Carrying a Nogo Receptor Antibody in a Rat Model. Biomed. Mater. 2007, 2, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Broguiere, N.; Isenmann, L.; Zenobi-Wong, M. Novel Enzymatically Cross-Linked Hyaluronan Hydrogels Support the Formation of 3D Neuronal Networks. Biomaterials 2016, 99, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.H.; Messersmith, P.B. Rational Design of Transglutaminase Substrate Peptides for Rapid Enzymatic Formation of Hydrogels. J. Am. Chem. Soc. 2003, 125, 14298–14299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.H.; Messersmith, P.B. Enzymatically Cross-Linked Hydrogels and their Adhesive Strength to Biosurfaces. Orthod. Craniofac. Res. 2005, 8, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of Immunological Properties of Bovine Serum Albumin by Covalent Attachment of Polyethylene Glycol. J. Biol. Chem. 1977, 252, 3578–3581. [Google Scholar] [PubMed]
- Abuchowski, A.; McCoy, J.R.; Palczuk, N.C.; van Es, T.; Davis, F.F. Effect of Covalent Attachment of Polyethylene Glycol on Immunogenicity and Circulating Life of Bovine Liver Catalase. J. Biol. Chem. 1977, 252, 3582–3586. [Google Scholar] [PubMed]
- Gorman, J.J.; Folk, J.E. Structural Features of Glutamine Substrates for Transglutaminases. Role of Extended Interactions in the Specificity of Human Plasma Factor XIIIa and of the Guinea Pig Liver Enzyme. J. Biol. Chem. 1984, 259, 9007–9010. [Google Scholar] [PubMed]
- Sato, H. Enzymatic Procedure for Site-Specific Pegylation of Proteins. Adv. Drug Deliv. Rev. 2002, 54, 487–504. [Google Scholar] [CrossRef]
- Mero, A.; Schiavon, M.; Veronese, F.M.; Pasut, G. A New Method to Increase Selectivity of Transglutaminase Mediated PEGylation of Salmon Calcitonin and Human Growth Hormone. J. Control. Release 2011, 154, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Jaafari, M.R.; Hassanzadeh-Khayyat, M.; Varasteh, A.; Chamani, J.; Iranshahi, M.; Mohammadpanah, H.; Abnous, K.; Saberi, M.R. Preparation, Characterization and Molecular Modeling of PEGylated Human Growth Hormone with Agonist Activity. Int. J. Biol. Macromol. 2015, 80, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Spolaore, B.; Raboni, S.; Satwekar, A.A.; Grigoletto, A.; Mero, A.; Montagner, I.M.; Rosato, A.; Pasut, G.; Fontana, A. Site-Specific Transglutaminase-Mediated Conjugation of Interferon Alpha-2b at Glutamine Or Lysine Residues. Bioconjug. Chem. 2016, 27, 2695–2706. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.C.; Gutmann, M.; Mueller, T.D.; Luhmann, T.; Meinel, L. Bioresponsive Release of Insulin-Like Growth Factor-I from its PEGylated Conjugate. J. Control. Release 2018, 279, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Goto, M.; Kamiya, N. Protein Lipidation Catalyzed by Microbial Transglutaminase. Chemistry 2011, 17, 14004–14008. [Google Scholar] [CrossRef] [PubMed]
- Folk, J.E.; Cole, P.W. Mechanism of Action of Guinea Pig Liver Transglutaminase. I. Purification and Properties of the Enzyme: Identification of a Functional Cysteine Essential for Activity. J. Biol. Chem. 1966, 241, 5518–5525. [Google Scholar] [PubMed]
- Tominaga, J.; Kemori, Y.; Tanaka, Y.; Maruyama, T.; Kamiya, N.; Goto, M. An Enzymatic Method for Site-Specific Labeling of Recombinant Proteins with Oligonucleotides. Chem. Commun. 2007, 4, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, M.; Tsuruda, Y.; Tanaka, Y.; Goto, M.; Mitsumori, M.; Hayashi, K.; Hiraishi, Y.; Miyawaki, K.; Noji, S.; Kamiya, N. Transglutaminase-Mediated Synthesis of a DNA-(Enzyme)N Probe for Highly Sensitive DNA Detection. Chemistry 2011, 17, 5387–5392. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, M.; Mitsumori, M.; Hayashi, K.; Hiraishi, Y.; Yoshinaga, H.; Nakano, K.; Miyawaki, K.; Noji, S.; Goto, M.; Kamiya, N. Transglutaminase-Mediated in Situ Hybridization (TransISH) System: A New Methodology for Simplified mRNA Detection. Anal. Chem. 2012, 84, 5885–5891. [Google Scholar] [CrossRef] [PubMed]
- Takahara, M.; Hayashi, K.; Goto, M.; Kamiya, N. Tailing DNA Aptamers with a Functional Protein by Two-Step Enzymatic Reaction. J. Biosci. Bioeng. 2013, 116, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Takahara, M.; Wakabayashi, R.; Minamihata, K.; Goto, M.; Kamiya, N. Primary Amine-Clustered DNA Aptamer for DNA-Protein Conjugation Catalyzed by Microbial Transglutaminase. Bioconjug. Chem. 2017, 28, 2954–2961. [Google Scholar] [CrossRef] [PubMed]
- Gnaccarini, C.; Ben-Tahar, W.; Mulani, A.; Roy, I.; Lubell, W.D.; Pelletier, J.N.; Keillor, J.W. Site-Specific Protein Propargylation using Tissue Transglutaminase. Org. Biomol. Chem. 2012, 10, 5258–5265. [Google Scholar] [CrossRef] [PubMed]
- Oteng-Pabi, S.K.; Pardin, C.; Stoica, M.; Keillor, J.W. Site-Specific Protein Labelling and Immobilization Mediated by Microbial Transglutaminase. Chem. Commun. 2014, 50, 6604–6606. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.; Castonguay, R.; Campos-Reales Pineda, N.B.; Jacquier, V.; Caron, K.; Michnick, S.W.; Keillor, J.W. De Novo Helical Peptides as Target Sequences for a Specific, Fluorogenic Protein Labelling Strategy. Mol. Biosyst. 2010, 6, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Oteng-Pabi, S.K.; Clouthier, C.M.; Keillor, J.W. Design of a Glutamine Substrate Tag Enabling Protein Labelling Mediated by Bacillus Subtilis Transglutaminase. PLoS ONE 2018, 13, e0197956. [Google Scholar] [CrossRef] [PubMed]
- Josten, A.; Haalck, L.; Spener, F.; Meusel, M. Use of Microbial Transglutaminase for the Enzymatic Biotinylation of Antibodies. J. Immunol. Methods 2000, 240, 47–54. [Google Scholar] [CrossRef]
- Jeger, S.; Zimmermann, K.; Blanc, A.; Grunberg, J.; Honer, M.; Hunziker, P.; Struthers, H.; Schibli, R. Site-Specific and Stoichiometric Modification of Antibodies by Bacterial Transglutaminase. Angew. Chem. Int. Ed. 2010, 49, 9995–9997. [Google Scholar] [CrossRef] [PubMed]
- Anami, Y.; Xiong, W.; Gui, X.; Deng, M.; Zhang, C.C.; Zhang, N.; An, Z.; Tsuchikama, K. Enzymatic Conjugation using Branched Linkers for Constructing Homogeneous Antibody-Drug Conjugates with High Potency. Org. Biomol. Chem. 2017, 15, 5635–5642. [Google Scholar] [CrossRef] [PubMed]
- Mindt, T.L.; Jungi, V.; Wyss, S.; Friedli, A.; Pla, G.; Novak-Hofer, I.; Grunberg, J.; Schibli, R. Modification of Different IgG1 Antibodies Via Glutamine and Lysine using Bacterial and Human Tissue Transglutaminase. Bioconjug. Chem. 2008, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
Applications | References |
---|---|
Food Industry | |
Dairy products (caseins and whey proteins) | [118,120,135,136,137] |
Soybean proteins | [121] |
Bakery products (gluten) | [122,123,138,139,140,141,142] |
Meat (myosins and myofibrillar protein) | [124,125,129,130,131,132,133,134] |
Eggs (ovalbumin) | [126] |
Seafood and edible films | [127,128,147,148,149,150,151,152,153] |
Biomedicine | |
Collagen-based scaffolds and hydrogels | [70,73,74,161,162,163,166,167,169,170,171,172,173,174,175,176,177,178] |
Other natural biopolymers-based hydrogels and microgels (Fibrin, gelatin, alginate, hyaluronic acid, casein) | [179,180,181,182,183,184,194,195,197,198,199,200] |
Synthetic biopolymers-based scaffolds and 3D microgels (ELPs, RZ, PEG) | [189,190,191,193,196,201,202] |
PEGylation/Lipidation | [206,207,208,209,210,211] |
Protein-DNA conjugation | [213,214,216,217] |
Protein fluorescent labelling | [218,219,220,221] |
Antibodies functionalization | [223,224,225] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savoca, M.P.; Tonoli, E.; Atobatele, A.G.; Verderio, E.A.M. Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. Micromachines 2018, 9, 562. https://doi.org/10.3390/mi9110562
Savoca MP, Tonoli E, Atobatele AG, Verderio EAM. Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. Micromachines. 2018; 9(11):562. https://doi.org/10.3390/mi9110562
Chicago/Turabian StyleSavoca, Maria Pia, Elisa Tonoli, Adeola G. Atobatele, and Elisabetta A. M. Verderio. 2018. "Biocatalysis by Transglutaminases: A Review of Biotechnological Applications" Micromachines 9, no. 11: 562. https://doi.org/10.3390/mi9110562
APA StyleSavoca, M. P., Tonoli, E., Atobatele, A. G., & Verderio, E. A. M. (2018). Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. Micromachines, 9(11), 562. https://doi.org/10.3390/mi9110562