Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton
<p>HPLC-MS separation of zwitterionic metabolites from <span class="html-italic">E. huxleyi</span> RCC1216. Total Ion Count (TIC --) and ion traces of dimethylsulfoniopropionate (DMSP), [M + 1] <span class="html-italic">m/z</span> = 135 <span class="html-fig-inline" id="marinedrugs-11-02168-i001"> <img alt="Marinedrugs 11 02168 i001" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i001.png"/></span>), glycine betaine (GBT, [M + 1] <span class="html-italic">m/z</span> = 118 <span class="html-fig-inline" id="marinedrugs-11-02168-i002"> <img alt="Marinedrugs 11 02168 i002" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i002.png"/></span>), trimethylammonium butyrate (TMAB, [M + 1] <span class="html-italic">m/z</span> = 146 <span class="html-fig-inline" id="marinedrugs-11-02168-i003"> <img alt="Marinedrugs 11 02168 i003" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i003.png"/></span>), gonyol ([M + 1] <span class="html-italic">m/z</span> = 179 <span class="html-fig-inline" id="marinedrugs-11-02168-i004"> <img alt="Marinedrugs 11 02168 i004" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i004.png"/></span>), homarine and trigonelline ([M + 1] <span class="html-italic">m/z</span> = 138 <span class="html-fig-inline" id="marinedrugs-11-02168-i005"> <img alt="Marinedrugs 11 02168 i005" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i005.png"/></span>). Ion traces of GBT, gonyol, TMAB and trigonelline are 10-times amplified.</p> "> Figure 2
<p>HPLC-MS separation of zwitterionic metabolites from <span class="html-italic">P. minimum</span>. Total Ion Count (TIC --) and ion traces of dimethylsulfoniopropionate (DMSP) ([M + 1] <span class="html-italic">m/z</span> = 135 <span class="html-fig-inline" id="marinedrugs-11-02168-i001"> <img alt="Marinedrugs 11 02168 i001" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i001.png"/></span>), glycine betaine (GBT) ([M + 1] <span class="html-italic">m/z</span> = 118 <span class="html-fig-inline" id="marinedrugs-11-02168-i002"> <img alt="Marinedrugs 11 02168 i002" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i002.png"/></span>), dimethylsulfonioacetate (DMS-Ac, [M + 1] <span class="html-italic">m/z</span> = 121 <span class="html-fig-inline" id="marinedrugs-11-02168-i006"> <img alt="Marinedrugs 11 02168 i006" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i006.png"/></span>), gonyol ([M + 1] <span class="html-italic">m/z</span> = 179 <span class="html-fig-inline" id="marinedrugs-11-02168-i004"> <img alt="Marinedrugs 11 02168 i004" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i004.png"/></span>), trigonelline ([M + 1] <span class="html-italic">m/z</span> = 138 <span class="html-fig-inline" id="marinedrugs-11-02168-i005"> <img alt="Marinedrugs 11 02168 i005" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i005.png"/></span>) and trimethylammonium propionate (TMAP, [M + 1] <span class="html-italic">m/z</span> = 132 <span class="html-fig-inline" id="marinedrugs-11-02168-i007"> <img alt="Marinedrugs 11 02168 i007" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i007.png"/></span>). Ion traces of GBT, DMS-Ac, gonyol, TMAP, and trigonelline are 10-times amplified.</p> "> Figure 3
<p>Intracellular concentrations of zwitterionic osmolytes of <span class="html-italic">E. huxleyi</span> RCC1216 as a function of medium salinity. (<b>A</b>) Major osmolytes: dimethylsulfoniopropionate (DMSP) (●), glycine betaine (GBT) (▲) and homarine (▼). (<b>B</b>) Minor osmolytes: gonyol (■), trimethylammonium propionate (TMAP) (♦), trimethylammonium butyrate (TMAB) (○) and trigonelline (◊). Concentrations are normalized to cell volume, error bars represent standard deviation (biological replicates, <span class="html-italic">N</span> = 5).</p> "> Figure 4
<p>Total concentration of intracellular zwitterionic osmolytes (bar graph) and cell volume (line graph) of <span class="html-italic">E. huxleyi</span> as a function of medium salinity. Bars represent concentrations of dimethylsulfoniopropionate (DMSP) ( <span class="html-fig-inline" id="marinedrugs-11-02168-i008"> <img alt="Marinedrugs 11 02168 i008" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i008.png"/></span>), gonyol ( <span class="html-fig-inline" id="marinedrugs-11-02168-i009"> <img alt="Marinedrugs 11 02168 i009" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i009.png"/></span>), glycine betaine GBT ( <span class="html-fig-inline" id="marinedrugs-11-02168-i010"> <img alt="Marinedrugs 11 02168 i010" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i010.png"/></span>), homarine ( <span class="html-fig-inline" id="marinedrugs-11-02168-i011"> <img alt="Marinedrugs 11 02168 i011" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i011.png"/></span>), trimethylammonium propionate (TMAP) ( <span class="html-fig-inline" id="marinedrugs-11-02168-i012"> <img alt="Marinedrugs 11 02168 i012" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i012.png"/></span>), trimethylammonium butyrate (TMAB) ( <span class="html-fig-inline" id="marinedrugs-11-02168-i013"> <img alt="Marinedrugs 11 02168 i013" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i013.png"/></span>) and trigonelline ( <span class="html-fig-inline" id="marinedrugs-11-02168-i014"> <img alt="Marinedrugs 11 02168 i014" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i014.png"/></span>). Osmolyte concentrations are normalized per cell, error bars represent standard deviation (biological replicates, <span class="html-italic">N</span> = 5).</p> "> Figure 5
<p>Total concentration of intracellular, zwitterionic osmolytes (bar graph) and cell volume (line graph) of <span class="html-italic">P. minimum</span> as a function of medium salinity. Bars represent concentrations of DMSP ( <span class="html-fig-inline" id="marinedrugs-11-02168-i008"> <img alt="Marinedrugs 11 02168 i008" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i008.png"/></span>), GBT ( <span class="html-fig-inline" id="marinedrugs-11-02168-i009"> <img alt="Marinedrugs 11 02168 i009" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i009.png"/></span>), DMS-Ac ( <span class="html-fig-inline" id="marinedrugs-11-02168-i010"> <img alt="Marinedrugs 11 02168 i010" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i010.png"/></span>), gonyol ( <span class="html-fig-inline" id="marinedrugs-11-02168-i011"> <img alt="Marinedrugs 11 02168 i011" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i011.png"/></span>), TMAP ( <span class="html-fig-inline" id="marinedrugs-11-02168-i012"> <img alt="Marinedrugs 11 02168 i012" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i012.png"/></span>), TMAB ( <span class="html-fig-inline" id="marinedrugs-11-02168-i013"> <img alt="Marinedrugs 11 02168 i013" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i013.png"/></span>) and trigonelline ( <span class="html-fig-inline" id="marinedrugs-11-02168-i014"> <img alt="Marinedrugs 11 02168 i014" src="/marinedrugs/marinedrugs-11-02168/article_deploy/html/images/marinedrugs-11-02168-i014.png"/></span>). Osmolyte concentrations are normalized per cell, error bars represent standard deviation (biological replicates, <span class="html-italic">N</span> = 5).</p> "> Figure 6
<p>Intracellular concentrations of zwitterionic osmolytes of <span class="html-italic">P. minimum</span> as a function of medium salinity. (<b>A</b>) Major osmolytes: dimethylsulfoniopropionate (DMSP) (●), glycine betaine (GBT) (▲) and dimethylsulfonioacetate DMS-Ac (▼); (<b>B</b>) minor osmolytes: gonyol (■), trimethylammonium propionateTMAP (♦), trimethylammonium butyrateTMAB (○) and trigonelline (◊); concentrations are normalized to cell volume, error bars represent standard deviation (biological replicates, <span class="html-italic">N</span> = 5).</p> "> Figure 7
<p>Chemical structures of zwitterionic osmolytes. (<b>A</b>) Investigated zwitterionic osmolytes: dimethylsulfoniopropionate (DMSP), glycine betaine (GBT), dimethylsulfonioacetate (DMS-Ac), gonyol, trimethylammonium propionate (TMAP), trimethylammonium butyrate (TMAB), homarine and trigonelline. (<b>B</b>) Isotope labeled internal standards: D<sub>6</sub>-dimethylsulfoniopropionate (D<sub>6</sub>-DMSP), D<sub>6</sub>-dimethylsulfonioacetate (D<sub>6</sub>-DMS-Ac) and D<sub>3</sub>-gonyol.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Emiliania huxleyi
2.2. Prorocentrum minimum
3. Experimental Section
3.1. Cultivation of Microalgae
3.2. Cell Counting and Size Measurement
3.3. Sample Preparation
3.4. Equipment
3.5. Osmolyte Analysis
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Kinne, R.K.H. The role of organic osmolytes in osmoregulation—From bacteria to mammals. J. Exp. Zool. 1993, 265, 346–355. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.G. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol. 2009, 219, 251–258. [Google Scholar] [CrossRef]
- Garza-Sanchez, F.; Chapman, D.J.; Cooper, J.B. Nitzschia ovalis (Bacillariophyceae) Mono Lake strain accumulates 1,4/2,5 cyclohexanetetrol in response to increased salinity. J. Phycol. 2009, 45, 395–403. [Google Scholar] [CrossRef]
- Fujii, S.; Nishimoto, N.; Notoya, A.; Hellebust, J.A. Growth and osmoregulation of Chaetoceros muelleri in relation to salinity. Plant Cell Physiol. 1995, 36, 759–764. [Google Scholar]
- Liu, C.-H.; Shih, M.-C.; Lee, T.-M. Free proline levels in Ulva (Chlorophyta) in response to hypersalinity: Elevated NaCl in seawater versus concentrated seawater (note). J. Phycol. 2000, 36, 118–119. [Google Scholar] [CrossRef]
- Dickson, D.M.J.; Kirst, G.O. The role of β-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 1986, 167, 536–543. [Google Scholar] [CrossRef]
- Dickson, D.M.J.; Kirst, G.O. Osmotic adjustment in marine eukaryotic algae—The role of inorganic ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes. 1. Diatoms and a rhodophyte. New Phytol. 1987, 106, 645–655. [Google Scholar] [CrossRef]
- Dickson, D.M.J.; Kirst, G.O. Osmotic adjustment in marine eukaryotic algae—The role of inorganic ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes. 2. Prasinophytes and haptophytes. New Phytol. 1987, 106, 657–666. [Google Scholar] [CrossRef]
- Kirst, G.O.; Thiel, C.; Wolff, H.; Nothnagel, J.; Wanzek, M.; Ulmke, R. Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role. Mar. Chem. 1991, 35, 381–388. [Google Scholar] [CrossRef]
- Sunda, W.; Kieber, D.J.; Kiene, R.P.; Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317–320. [Google Scholar] [CrossRef]
- Karsten, U.; Wiencke, C.; Kirst, G.O. The effect of salinity changes upon the physiology of eulittoral green macroalgae from antarctica and southern chile. 2. Intracellular inorganic ions and organic compounds. J. Exp. Bot. 1991, 42, 1533–1539. [Google Scholar] [CrossRef]
- Cantoni, G.L.; Anderson, D.G. Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J. Biol. Chem. 1956, 222, 171–177. [Google Scholar]
- Turner, S.M.; Malin, G.; Liss, P.S.; Harbour, D.S.; Holligan, P.M. The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol. Oceanogr. 1988, 33, 364–375. [Google Scholar] [CrossRef]
- Kiene, R.P.; Linn, L.J.; Bruton, J.A. New and important roles for DMSP in marine microbial communities. J. Sea Res. 2000, 43, 209–224. [Google Scholar] [CrossRef]
- Kettle, A.J.; Andreae, M.O. Flux of dimethylsulfide from the oceans: A comparison of updated data seas and flux models. J. Geophys. Res. Atmos. 2000, 105, 26793–26808. [Google Scholar] [CrossRef]
- Keller, M.D.; Kiene, R.P.; Matrai, P.A.; Bellows, W.K. Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. I. Batch cultures. Mar. Biol. 1999, 135, 237–248. [Google Scholar] [CrossRef]
- Nakamura, H.; Fujimaki, K.; Sampei, O.; Murai, A. Gonyol: Methionine-induced sulfonium accumulation in a dinoflagellate Gonyaulax polyedra. Tetrahedron Lett. 1993, 34, 8481–8484. [Google Scholar] [CrossRef]
- Van Bergeijk, S.A.; van der Zee, C.; Stal, L.J. Uptake and excretion of dimethylsulphoniopropionate is driven by salinity changes in the marine benthic diatom Cylindrotheca closterium. Eur. J. Phycol. 2003, 38, 341–349. [Google Scholar] [CrossRef]
- Cosquer, A.; Pichereau, V.; Pocard, J.A.; Minet, J.; Cormier, M.; Bernard, T. Nanomolar levels of dimethylsulfoniopropionate, dimethylsulfonioacetate, and glycine betaine are sufficient to confer osmoprotection to Escherichia coli. Appl. Environ. Microbiol. 1999, 65, 3304–3311. [Google Scholar]
- Spielmeyer, A.; Gebser, B.; Pohnert, G. Investigations of the uptake of dimethylsulfoniopropionate by phytoplankton. ChemBioChem 2011, 12, 2276–2279. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Pohnert, G. Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton. Mar. Environ. Res. 2012, 73, 62–69. [Google Scholar]
- Thierstein, H.R.; Young, J.R. Coccolithophores; Springer-Verlag: Berlin, Germany, 2004. [Google Scholar]
- Yallop, M.L. Distribution patterns and biomass estimates of diatoms and autotrophic dinoflagellates in the NE Atlantic during June and July 1996. Deep Sea Res. II 2001, 48, 825–844. [Google Scholar] [CrossRef]
- Tango, P.J.; Magnien, R.; Butler, W.; Luckett, C.; Luckenbach, M.; Lacouture, R.; Poukish, C. Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay. Harmful Algae 2005, 4, 525–531. [Google Scholar] [CrossRef]
- Hernández-Becerril, D.U.; Cortés Altamirano, R.; Alonso, R.R. The dinoflagellate genus Prorocentrum along the coasts of the Mexican Pacific. Hydrobiologia 2000, 418, 111–121. [Google Scholar] [CrossRef]
- Pertola, S.; Kuosa, H.; Olsonen, R. Is the invasion of Prorocentrum minimum (Dinophyceae) related to the nitrogen enrichment of the Baltic Sea? Harmful Algae 2005, 4, 481–492. [Google Scholar]
- Spielmeyer, A.; Pohnert, G. Daytime, growth phase and nitrate availability dependent variations of dimethylsulfoniopropionate in batch cultures of the diatom Skeletonema marinoi. J. Exp. Mar. Biol. Ecol. 2012, 413, 121–130. [Google Scholar] [CrossRef]
- Maier, I.; Calenberg, M. Effect of extracellular Ca2+ and Ca2+-antagonists on the movement and chemoorientation of male gametes of Ectocarpus siliculosus (Phaeophyceae). Bot. Acta 1994, 107, 451–460. [Google Scholar]
- Spielmeyer, A.; Pohnert, G. Direct quantification of dimethylsulfoniopropionate (DMSP) with hydrophilic interaction liquid chromatography/mass spectrometry. J. Chromatogr. B 2010, 878, 3238–3242. [Google Scholar] [CrossRef]
- Gasteiger, E.L.; Haake, P.C.; Gergen, J.A. An investigation of the distribution and function of homarine (N-methyl picolinic acid). Ann. N. Y. Acad. Sci. 1960, 90, 622–636. [Google Scholar] [CrossRef]
- Bandaranayake, W.M.; Bourne, D.J.; Sim, R.G. Chemical composition during maturing and spawning of the sponge Dysidea herbacea (Porifera: Demospongiae). Comp. Biochem. Phys. B 1997, 118, 851–859. [Google Scholar] [CrossRef]
- Blunden, G.; Guiry, M.D.; Druehl, L.D.; Kogame, K.; Kawai, H. Trigonelline and other betaines in species of laminariales. Nat. Prod. Commun. 2012, 7, 863–865. [Google Scholar]
- Blunden, G.; Morse, P.F.; Mathe, I.; Hohmann, J.; Critchley, A.T.; Morrell, S. Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Nat. Prod. Commun. 2010, 5, 581–585. [Google Scholar]
- Blackwell, J.R.; Gilmour, D.J. Physiological response of the unicellular green alga Chlorococcum submarinum to rapid changes in salinity. Arch. Microbiol. 1991, 157, 86–91. [Google Scholar]
- Veldhuis, M.J.W.; Admiraal, W. Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar. Biol. 1987, 95, 47–54. [Google Scholar] [CrossRef]
- Van Rijssel, M.; Gieskes, W.W.C. Temperature, light, and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae). J. Sea Res. 2002, 48, 17–27. [Google Scholar] [CrossRef]
- Bucciarelli, E.; Sunda, W.G.; Belviso, S.; Sarthou, G. Effect of the diel cycle on production of dimethylsulfoniopropionate in batch cultures of Emiliania huxleyi. Aquat. Microb. Ecol. 2007, 48, 73–81. [Google Scholar] [CrossRef]
- Engström-Öst, J.; Repka, S.; Mikkonen, M. Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production. Harmful Algae 2011, 10, 530–535. [Google Scholar]
- Röder, K.; Hantzsche, F.M.; Gebühr, C.; Miene, C.; Helbig, T.; Krock, B.; Hoppenrath, M.; Luckas, B.; Gerdts, G. Effects of salinity, temperature and nutrients on growth, cellular characteristics and yessotoxin production of Protoceratium reticulatum. Harmful Algae 2012, 15, 59–70. [Google Scholar]
Supplementary Files
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gebser, B.; Pohnert, G. Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton. Mar. Drugs 2013, 11, 2168-2182. https://doi.org/10.3390/md11062168
Gebser B, Pohnert G. Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton. Marine Drugs. 2013; 11(6):2168-2182. https://doi.org/10.3390/md11062168
Chicago/Turabian StyleGebser, Björn, and Georg Pohnert. 2013. "Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton" Marine Drugs 11, no. 6: 2168-2182. https://doi.org/10.3390/md11062168
APA StyleGebser, B., & Pohnert, G. (2013). Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton. Marine Drugs, 11(6), 2168-2182. https://doi.org/10.3390/md11062168