Nothing Special   »   [go: up one dir, main page]

Next Article in Journal
Evaluating the Predictive Power of Ordination Methods in Ecological Context
Next Article in Special Issue
Consensus-Based Multi-Person Decision Making with Incomplete Fuzzy Preference Relations Using Product Transitivity
Previous Article in Journal
Characterizations of Right Weakly Regular Semigroups in Terms of Generalized Cubic Soft Sets
Previous Article in Special Issue
Models for Multiple Attribute Decision Making with Some 2-Tuple Linguistic Pythagorean Fuzzy Hamy Mean Operators
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination

1
School of Business, Sichuan Normal University, Chengdu 610101, China
2
School of Finance, Yunnan University of Finance and Economics, Kunming 650221, China
*
Authors to whom correspondence should be addressed.
Mathematics 2018, 6(12), 294; https://doi.org/10.3390/math6120294
Submission received: 29 September 2018 / Revised: 24 November 2018 / Accepted: 24 November 2018 / Published: 1 December 2018
(This article belongs to the Special Issue Nonlinear Analysis Using Fuzzy Mathematics)

Abstract

:
In this paper, we expand the Hamy mean (HM) operator and Dombi operations with interval-valued intuitionistic fuzzy numbers (IVIFNs) to propose the interval-valued intuitionistic fuzzy Dombi Hamy mean (IVIFDHM) operator, interval-valued intuitionistic fuzzy weighted Dombi Hamy mean (IVIFWDHM) operator, interval-valued intuitionistic fuzzy dual Dombi Hamy mean (IVIFDDHM) operator, and interval-valued intuitionistic fuzzy weighted dual Dombi Hamy mean (IVIFWDDHM) operator. Then the MADM models are designed with IVIFWDHM and IVIFWDDHM operators. Finally, we gave an example for evaluating the elderly tourism service quality in tourism destination to show the proposed models.

1. Introduction

The concept of intuitionistic fuzzy sets (IFSs) [1,2] has been utilized to deal with uncertainty and imprecision. Atanassov and Gargov [3] defined the interval-valued intuitionistic fuzzy sets (IVIFSs). Xu [4] introduced a method for the comparison between two intuitionistic fuzzy numbers (IFNs) and then develop some arithmetic aggregation operators. Xu and Yager [5] proposed some new geometric aggregation operators with IFNs. Xu and Chen [6] developed some interval-valued intuitionistic fuzzy geometric operators with interval-valued intuitionistic fuzzy numbers (IVIFNs). Wei [7] proposed two new aggregation operators: the induced intuitionistic fuzzy ordered weighted geometric (I-IFOWG) operator and the induced interval-valued intuitionistic fuzzy ordered weighted geometric (I-IIFOWG) operator. Wei [8] developed the gray relational analysis (GRA) for interval-valued intuitionistic fuzzy MADM with incompletely known attribute weight information. Xu and Chen [9] defined the Bonferroni mean for aggregating the IVIFNs based on the Bonferroni mean [10,11,12,13,14,15,16,17]. Chen [18] proposed the LINMAP (Linear Programming Technique for Multidimensional Analysis of Preference) model for MADM with IVIFNs. Hashemi, et al. [19] defined the multiple attribute group decision-making (MAGDM) model on the basis of the compromise ratio method with IVIFNs. Liu, et al. [20] gave the principal component analysis (IVIF-PCA) model for IVIFNs. Chen [21] proposed the interval-valued intuitionistic fuzzy preference ranking organization method for enrichment evaluations (IVIF-PROMETHEE) to deal with MADM. Dugenci [22] introduced a novel generalized distance measure for IVIFNs and illustrated the applicability of the proposed distance measure to MAGDM. Garg [23] defined a new generalized improved score function for IVIFNs. Until now, more and more decision making theories of IFSs and IVIFSs are extended to picture fuzzy set [24,25,26,27,28,29,30,31,32,33] and Pythagorean fuzzy sets [34,35,36,37,38,39,40,41,42,43,44].
Although IFSs and IVIFSs have been effectively used in some areas, all the existed approaches are unsuitable to depict the interrelationships among any number of IVIFNs assigned by a variable vector. The Hamy mean (HM) operator [38,45,46,47,48] and dual Hamy mean (DHM) operator [49] are famous operators which can show interrelationships among any number of arguments assigned by a variable vector. Therefore, the HM and DHM operators can assign a robust and flexible mechanism to solve the information fusion in MADM problems. Thus, we propose some HM operator to overcome this limits. Thus, how to aggregate these IVIFNs-based the traditional HM operators based on the Dombi operations [50,51,52,53] is an interesting issue. So, the purpose of this paper is to propose some HM and DHM operators to solve the MADM for evaluating the elderly tourism service quality in tourism destination with IVIFNs. In order to do so, the rest of this paper is organized as follows. In Section 2, we introduce the IVIFNs. In Section 3, we develop some HM operators with IVIFNs based on the Dombi operations. In Section 4, we present an example for evaluating the elderly tourism service quality in tourism destination with IVIFNs. Section 5 ends this paper with some comments.

2. Preliminaries

2.1. IFSs and IVIFSs

The concept of IFSs and IVIFSs are introduced.
Definition 1
[1,2].An IFS Q in X is designed by
Q = { x , θ Q ( x ) , ϑ Q ( x ) | x X }
where θ Q :   X [ 0 , 1 ] and ϑ Q :   X [ 0 , 1 ] , and 0 θ Q ( x ) + ϑ Q ( x ) 1 ,   x X . The number θ Q ( x ) and ϑ Q ( x ) represents, respectively, the membership degree and non- membership degree of the element x to the set Q .
Definition 2
[3].Let X be an universe of discourse, An IVIFS Q ˜ over X is an object having the form as follows:
Q ˜ = { x , θ ˜ Q ˜ ( x ) , ϑ ˜ Q ˜ ( x ) | x X }
where θ ˜ Q ˜ ( x ) [ 0 , 1 ] and ϑ ˜ Q ˜ ( x ) [ 0 , 1 ] are interval numbers, and 0 sup ( θ ˜ Q ˜ ( x ) ) + sup ( ϑ ˜ Q ˜ ( x ) ) 1 ,   x X . For convenience, let θ ˜ Q ˜ ( x ) = [ e , f ] , ϑ ˜ Q ˜ ( x ) = [ g , h ] , so φ ˜ = ( [ e , f ] , [ g , h ] ) is an IVIFNs.
Definition 3
[54].Let φ ˜ = ( [ e , f ] , [ g , h ] ) be an IVIFN, a score function S can be defined as follows:
S ( φ ˜ ) = e g + f h 2 , S ( φ ˜ ) [ 1 , 1 ] .
Definition 4
[54].Let φ ˜ = ( [ e , f ] , [ g , h ] ) be an IVIFN, an accuracy function H can be defined as follows:
H ( φ ˜ ) = e + f + g + h 2 , H ( φ ˜ ) [ 0 , 1 ] .
To evaluate the degree of accuracy of the IVIFN φ ˜ = ( [ e , f ] , [ g , h ] ) .
Definition 5
[54].Let φ ˜ 1 = ( [ e 1 , f 1 ] , [ g 1 , h 1 ] ) and φ ˜ 2 = ( [ e 2 , f 2 ] , [ g 2 , h 2 ] ) be two IVIFNs, s ( φ ˜ 1 ) = e 1 f 1 + g 1 h 1 2 and s ( φ ˜ 2 ) = e 2 f 2 + g 2 h 2 2 be the scores of φ ˜ 1 and φ ˜ 2 , respectively, and let H ( φ ˜ 1 ) = e 1 + f 1 + g 1 + h 1 2 and H ( φ ˜ 2 ) = e 2 + f 2 + g 2 + h 2 2 be the accuracy degrees of φ ˜ 1 and φ ˜ 2 , respectively, then if S ( φ ˜ 1 ) < S ( φ ˜ 2 ) , then φ ˜ 1 < φ ˜ 2 ; if S ( φ ˜ 1 ) = S ( φ ˜ 2 ) , then (1) if H ( φ ˜ 1 ) = H ( φ ˜ 2 ) , then φ ˜ 1 = φ ˜ 2 ; (2) if H ( φ ˜ 1 ) < H ( φ ˜ 2 ) , then φ ˜ 1 < φ ˜ 2 .
Definition 6
[54].For two IVIFNs φ ˜ 1 = ( [ e 1 , f 1 ] , [ g 1 , h 1 ] ) and φ ˜ 2 = ( [ e 2 , f 2 ] , [ g 2 , h 2 ] ) , the following operational laws are defined as follows:
(1) φ ˜ 1 φ ˜ 2 = ( [ e 1 + e 2 e 1 e 2 , f 1 + f 2 f 1 f 2 ] , [ g 1 g 2 , h 1 h 2 ] ) ;
(2) φ ˜ 1 φ ˜ 2 = ( [ e 1 e 2 , f 1 f 2 ] , [ g 1 + g 2 g 1 g 2 , h 1 + h 2 h 1 h 2 ] ) ;
(3) λ φ ˜ 1 = ( [ 1 ( 1 e 1 ) λ , 1 ( 1 f 1 ) λ ] , [ g 1 λ , h 1 λ ] ) , λ > 0 ;
(4) ( φ ˜ 1 ) λ = ( [ e 1 λ , f 1 λ ] , [ 1 ( 1 g 1 ) λ , 1 ( 1 h 1 ) λ ] ) , λ > 0 .

2.2. HM Operator

Hara, Uchiyama and Takahasi [48] proposed the HM operator.
Definition 7
[48].The HM operator is defined as follows:
HM ( x ) ( φ 1 , φ 2 , , φ n ) = 1 i 1 < < i x n ( j = 1 x φ i j ) 1 x C n x
where x is a parameter, x = 1 , 2 , , n , i 1 , i 2 , , i x are x integer values taken from the set { 1 , 2 , , n } of k integer values, C n x is the binomial coefficient, C n x = n ! x ! ( n x ) ! .

2.3. Dombi Operations of IVIFNs

Definition 8
[50].Dombi [50] proposed a generator to produce Dombi T-norm and T-conorm which are shown as follows:
D ( q , r ) = 1 1 + ( ( 1 q q ) β + ( 1 r r ) β ) 1 / β
D c ( q , r ) = 1 1 1 + ( ( q 1 q ) β + ( r 1 r ) β ) 1 / β
where β > 0 , ( q , r ) [ 0 , 1 ] .
Based on the Dombi T-norm and T-conorm, we can give the operational rules of IVIFNs.
Definition 9.
For two IVIFNs φ ˜ 1 = ( [ e 1 , f 1 ] , [ g 1 , h 1 ] ) and φ ˜ 2 = ( [ e 2 , f 2 ] , [ g 2 , h 2 ] ) , λ > 0 , the Dombi operational laws are defined as follows:
(1) φ ˜ 1 φ ˜ 2 = ( [ 1 1 1 + ( ( e 1 1 e 1 ) λ + ( e 2 1 e 2 ) λ ) 1 λ , 1 1 1 + ( ( f 1 1 f 1 ) λ + ( f 2 1 f 2 ) λ ) 1 λ ] , [ 1 1 + ( ( 1 g 1 g 1 ) λ + ( 1 g 2 g 2 ) λ ) 1 λ , 1 1 + ( ( 1 h 1 h 1 ) λ + ( 1 h 2 h 2 ) λ ) 1 λ ] ) ;
(2) φ ˜ 1 φ ˜ 2 = ( [ 1 1 + ( ( 1 e 1 e 1 ) λ + ( 1 e 2 e 2 ) λ ) 1 λ , 1 1 + ( ( 1 f 1 f 1 ) λ + ( 1 f 2 f 2 ) λ ) 1 λ ] , [ 1 1 1 + ( ( g 1 1 g 1 ) λ + ( g 2 1 g 2 ) λ ) 1 λ , 1 1 1 + ( ( h 1 1 h 1 ) λ + ( h 2 1 h 2 ) λ ) 1 λ ] ) ;
(3) n φ ˜ 1 = ( [ 1 1 1 + ( n ( e 1 1 e 1 ) λ ) 1 λ , 1 1 1 + ( n ( f 1 1 f 1 ) λ ) 1 λ ] , [ 1 1 + ( n ( 1 g 1 g 1 ) λ ) 1 λ , 1 1 + ( n ( 1 h 1 h 1 ) λ ) 1 λ ] ) ;
(4) ( φ ˜ 1 ) n = ( [ 1 1 + ( n ( 1 e 1 e 1 ) λ ) 1 λ , 1 1 + ( n ( 1 f 1 f 1 ) λ ) 1 λ ] , [ 1 1 1 + ( n ( g 1 1 g 1 ) λ ) 1 λ , 1 1 1 + ( n ( h 1 1 h 1 ) λ ) 1 λ ] ) .

3. Some Dombi Hamy Mean Operators with IVIFNs

3.1. The IVIFDHM Operator

Based on the HM operator and Dombi operation rules, the IVIFDHM operator is defined as follows:
Definition 10.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. The IVIFDHM operator is
IVIFDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = 1 i 1 < < i x n ( j = 1 x φ ˜ i j ) 1 x C n x
Theorem 1.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. The fused value by the IVIFDHM operators is also an IVIFN where
IVIFDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = 1 i 1 < < i x n ( j = 1 x φ ˜ i j ) 1 x C n x = ( [ 1 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( 1 e i j e i j ) λ ) 1 λ , 1 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( g i j 1 g i j ) λ ) 1 λ , 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( h i j 1 h i j ) λ ) 1 λ ] )
Proof. 
j = 1 x φ ˜ i j = ( [ 1 1 + ( j = 1 x ( 1 e i j e i j ) λ ) 1 λ , 1 1 + ( j = 1 x ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 1 + ( j = 1 x ( g i j 1 g i j ) λ ) 1 λ , 1 1 + ( j = 1 x ( 1 h i j h i j ) λ ) 1 λ ] )
Thus,
( j = 1 x φ ˜ i j ) 1 x = ( [ 1 1 + ( 1 x j = 1 x ( 1 e i j e i j ) λ ) 1 λ , 1 1 + ( 1 x j = 1 x ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 x j = 1 x ( g i j 1 g i j ) λ ) 1 λ , 1 1 1 + ( 1 x j = 1 x ( h i j 1 h i j ) λ ) 1 λ ] )
Thereafter,
1 i 1 < < i x n ( j = 1 x φ ˜ i j ) 1 x = ( [ 1 1 1 + ( 1 i 1 < < i x n x j = 1 x ( 1 e i j e i j ) λ ) 1 λ , 1 1 1 + ( 1 i 1 < < i x n x j = 1 x ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 + ( 1 i 1 < < i x n x j = 1 x ( g i j 1 g i j ) λ ) 1 λ , 1 1 + ( 1 i 1 < < i x n x j = 1 x ( h i j 1 h i j ) λ ) 1 λ ] )
Therefore,
IVIFDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = 1 i 1 < < i x n ( j = 1 x φ ˜ i j ) 1 x C n x = ( [ 1 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( 1 e i j e i j ) λ ) 1 λ , 1 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( g i j 1 g i j ) λ ) 1 λ , 1 1 + ( x C n x 1 i 1 < < i x n 1 j = 1 x ( h i j 1 h i j ) λ ) 1 λ ] )
Thus Equation (9) is right. □
Example 1.
Let φ ˜ 1 = ( [ 0.2 , 0.4 ] , [ 0.3 , 0.6 ] ) , φ ˜ 2 = ( [ 0.1 , 0.3 ] , [ 0.2 , 0.5 ] ) , φ ˜ 3 = ( [ 0.3 , 0.5 ] , [ 0.1 , 0.2 ] ) and φ ˜ 4 = ( [ 0.1 , 0.4 ] , [ 0.3 , 0.5 ] ) be four IVIFNs, and x = 2 , λ = 3 ,
1 e i j e i j = ( 4.0000 , 9.0000 , 2.3333 , 9.0000 ) , 1 f i j f i j = ( 1.5000 , 2.3333 , 1.0000 , 1.5000 ) g i j 1 g i j = ( 0.4286 , 0.2500 , 0.1111 , 0.4286 ) , h i j 1 h i j = ( 1.5000 , 1.0000 , 0.2500 , 1.0000 )
Then according to Equation (9), we have
IFDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = 1 i 1 < < i x n ( j = 1 x φ ˜ i j ) 1 x C n x = { [ 1 1 / ( 1 + ( 2 C 4 2 × ( 1 4 . 0000 3 + 9 . 0000 3 + 1 4 . 0000 3 + 2 . 3333 3 + 1 4 . 0000 3 + 9 . 0000 3 + 1 9 . 0000 3 + 2 . 3333 3 + 1 9 . 0000 3 + 9 . 0000 3 + 1 2 . 3333 3 + 9 . 0000 3 ) ) 1 3 ) , 1 1 / ( 1 + ( 2 C 4 2 × ( 1 1 . 5000 3 + 2 . 3333 3 + 1 1 . 5000 3 + 1 . 0000 3 + 1 1 . 5000 3 + 1 . 5000 3 + 1 2 . 3333 3 + 1 . 0000 3 + 1 2 . 3333 3 + 1 . 5000 3 + 1 1 . 0000 3 + 1 . 5000 3 ) ) 1 3 ) ] , [ 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4286 3 + 0 . 2500 3 + 1 0 . 4286 3 + 0 . 1111 3 + 1 0 . 4286 3 + 0 . 4286 3 + 1 0 . 2500 3 + 0 . 1111 3 + 1 0 . 2500 3 + 0 . 4286 3 + 1 0.1111 3 + 0 . 4286 3 ) ) 1 3 ) , 1 / ( 1 + ( 2 C 4 2 × ( 1 1 . 5000 3 + 1 . 0000 3 + 1 1 . 5000 3 + 0 . 2500 3 + 1 1 . 5000 3 + 1 . 0000 3 + 1 1 . 0000 3 + 0 . 2500 3 + 1 1 . 0000 3 + 1 . 0000 3 + 1 0 . 2500 3 + 1 . 0000 3 ) ) 1 3 ) ] } = ( [ 0.1560 , 0.3919 ] , [ 0.2306 , 0.4941 ] )
Then we list some properties of IVIFDHM operator.
Property 1.
(Idempotency) If φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) = φ ˜ are equal, then
IVIFDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = φ ˜
Property 2.
(Monotonicity) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) and θ ˜ j = ( [ r j , s j ] , [ m j , n j ] ) ( j = 1 , 2 , , n ) be two sets of IVIFNs. If e j r j , f j s j   a n d   g j m j , h j n j hold for all j , then
IVIFDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) IVIFDHM ( x ) ( θ ˜ 1 , θ ˜ 2 , , θ ˜ n )
Property 3.
(Boundedness) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. If φ ˜ i + = ( ( [ max i ( e j ) , max i ( f j ) ] , [ min i ( g j ) , min i ( h j ) ] ) ) and φ ˜ i = ( [ min i ( e j ) , min i ( f j ) ] , [ max i ( g j ) , max i ( h j ) ] ) then
φ ˜ IVIFDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) φ ˜ +

3.2. The IVIFWDHM Operator

In real MADM, it is important to pay attention to attribute weights. Thus we propose the interval-valued intuitionistic fuzzy weighted Dombi Hamy mean (IVIFWDHM) operator.
Definition 11.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs with their weight vector w i = ( w 1 , w 2 , , w n ) T , thereby satisfying w i [ 0 , 1 ] and i = 1 n w i = 1 . Then the IVIFWDHM operator is as follows:
IVIFWDHM w ( x ) ( φ 1 , φ 2 , , φ n ) = 1 i 1 < < i x n ( j = 1 x ( φ ˜ i j ) w i j ) 1 x C n x
Theorem 2.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. The fused value by IVIFWDHM operators is also an IVIFN where
IVIFWDHM w ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = 1 i 1 < < i x n ( j = 1 x ( φ ˜ i j ) w i j ) 1 x C n x = ( [ 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( 1 e i j e i j ) λ ) 1 λ , 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( g i j 1 g i j ) λ ) 1 λ , 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( h i j 1 h i j ) λ ) 1 λ ] ) .
Proof. 
( φ ˜ i j ) w i j = ( [ 1 1 + ( w i j ( 1 e i j e i j ) λ ) 1 λ , 1 1 + ( w i j ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 1 + ( w i j ( g i j 1 g i j ) λ ) 1 λ , 1 1 1 + ( w i j ( h i j 1 h i j ) λ ) 1 λ ] ) .
Thus,
j = 1 x ( φ ˜ i j ) w i j = ( [ 1 1 + ( j = 1 x w i j ( 1 e i j e i j ) λ ) 1 λ , 1 1 + ( j = 1 x w i j ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 1 + ( j = 1 x w i j ( g i j 1 g i j ) λ ) 1 λ , 1 1 1 + ( j = 1 x w i j ( h i j 1 h i j ) λ ) 1 λ ] ) .
Therefore,
( j = 1 x ( φ ˜ i j ) w i j ) 1 x = ( [ 1 1 + ( 1 x j = 1 x w i j ( 1 e i j e i j ) λ ) 1 λ , 1 1 + ( 1 x j = 1 x w i j ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 x j = 1 x w i j ( g i j 1 g i j ) λ ) 1 λ , 1 1 1 + ( 1 x j = 1 x w i j ( h i j 1 h i j ) λ ) 1 λ ] ) .
Thereafter,
1 i 1 < < i x n ( j = 1 x ( φ ˜ i j ) w i j ) 1 x = ( [ 1 1 1 + ( 1 i 1 < < i x n x j = 1 x w i j ( 1 e i j e i j ) λ ) 1 λ , 1 1 1 + ( 1 i 1 < < i x n x j = 1 x w i j ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 + ( 1 i 1 < < i x n x j = 1 x w i j ( g i j 1 g i j ) λ ) 1 λ , 1 1 + ( 1 i 1 < < i x n x j = 1 x w i j ( h i j 1 h i j ) λ ) 1 λ ] ) .
Therefore,
IVIFWDHM w ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = 1 i 1 < < i x n ( j = 1 x ( φ ˜ i j ) w i j ) 1 x C n x = ( [ 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( 1 e i j e i j ) λ ) 1 λ , 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( 1 f i j f i j ) λ ) 1 λ ] , [ 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( g i j 1 g i j ) λ ) 1 λ , 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x w i j ( h i j 1 h i j ) λ ) 1 λ ] ) .
Hence, Equation (18) is kept. □
Example 2.
Let φ ˜ 1 = ( [ 0.2 , 0.4 ] , [ 0.3 , 0.6 ] ) , φ ˜ 2 = ( [ 0.1 , 0.3 ] , [ 0.2 , 0.5 ] ) , φ ˜ 3 = ( [ 0.3 , 0.5 ] , [ 0.1 , 0.2 ] ) and φ ˜ 4 = ( [ 0.1 , 0.4 ] , [ 0.3 , 0.5 ] ) be four IVIFNs, and x = 2 , λ = 3 , w = ( 0.4 , 0.1 , 0.3 , 0.2 ) ,
1 e i j e i j = ( 4.0000 , 9.0000 , 2.3333 , 9.0000 ) , 1 f i j f i j = ( 1.5000 , 2.3333 , 1.0000 , 1.5000 ) g i j 1 g i j = ( 0.4286 , 0.2500 , 0.1111 , 0.4286 ) , h i j 1 h i j = ( 1.5000 , 1.0000 , 0.2500 , 1.0000 )
Then according to Equation (18), we have
IVIFWDHM w ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = 1 i 1 < < i x n ( j = 1 x ( φ ˜ i j ) w i j ) 1 x C n x = { [ 1 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 4 . 0000 3 + 0 . 1 × 9 . 0000 3 + 1 0 . 4 × 4 . 0000 3 + 0 . 3 × 2 . 3333 3 + 1 0 . 4 × 4 . 0000 3 + 0 . 2 × 9 . 0000 3 + 1 0 . 1 × 9 . 0000 3 + 0 . 3 × 2 . 3333 3 + 1 0 . 1 × 9 . 0000 3 + 0 . 2 × 9 . 0000 3 + 1 0 . 3 × 2 . 3333 3 + 0 . 2 × 9 . 0000 3 ) ) 1 3 ) , 1 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 1 . 5000 3 + 0 . 1 × 2 . 3333 3 + 1 0 . 4 × 1 . 5000 3 + 0 . 3 × 1 . 0000 3 + 1 0 . 4 × 1 . 5000 3 + 0 . 2 × 1 . 5000 3 + 1 0 . 1 × 2 . 3333 3 + 0 . 3 × 1 . 0000 3 + 1 0 . 1 × 2 . 3333 3 + 0 . 2 × 1 . 5000 3 + 1 0 . 3 × 1 . 0000 3 + 0 . 2 × 1 . 5000 3 ) ) 1 3 ) ] , [ 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 0 . 4286 3 + 0 . 1 × 0 . 2500 3 + 1 0 . 4 × 0 . 4286 3 + 0 . 3 × 0 . 1111 3 + 1 0 . 4 × 0 . 4286 3 + 0 . 2 × 0 . 4286 3 + 1 0 . 1 × 0 . 2500 3 + 0 . 3 × 0 . 1111 3 + 1 0 . 1 × 0 . 2500 3 + 0 . 2 × 0 . 4286 3 + 1 0 . 3 × 0.1111 3 + 0 . 2 × 0 . 4286 3 ) ) 1 3 ) , 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 1 . 5000 3 + 0 . 1 × 1 . 0000 3 + 1 0 . 4 × 1 . 5000 3 + 0 . 3 × 0 . 2500 3 + 1 0 . 4 × 1 . 5000 3 + 0 . 2 × 1 . 0000 3 + 1 0 . 1 × 1 . 0000 3 + 0 . 3 × 0 . 2500 3 + 1 0 . 1 × 1 . 0000 3 + 0 . 2 × 1 . 0000 3 + 1 0 . 3 × 0 . 2500 3 + 0 . 2 × 1 . 0000 3 ) ) 1 3 ) ] } = ( [ 0.2257 , 0.5165 ] , [ 0.1392 , 0.3476 ] )
Then we list some properties of the IVIFWDHM operator.
Property 4.
(Monotonicity) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) and θ ˜ j = ( [ r j , s j ] , [ m j , n j ] ) ( j = 1 , 2 , , n ) be two sets of IVIFNs. If e j r j , f j s j   a n d   g j m j , h j n j hold for all j , then
IVIFWDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) IVIFWDHM ( x ) ( θ ˜ 1 , θ ˜ 2 , , θ ˜ n )
The proof is similar to IVIFDHM, thus, it is omitted here.
Property 5.
(Boundedness) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. If φ ˜ i + = ( ( [ max i ( e j ) , max i ( f j ) ] , [ min i ( g j ) , min i ( h j ) ] ) ) and φ ˜ i = ( [ min i ( e j ) , min i ( f j ) ] , [ max i ( g j ) , max i ( h j ) ] ) then
φ ˜ IVIFWDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) φ ˜ +

3.3. The IVIFDDHM Operator

Wu, Wang, Wei, and Wei [49] proposed the dual HM (DHM) operator.
Definition 12
[49].The DHM operator is as follows:
DHM ( x ) ( φ 1 , φ 2 , , φ n ) = ( 1 i 1 < < i x n ( j = 1 x φ i j x ) ) 1 C n x
where x is a parameter and x = 1 , 2 , , n , i 1 , i 2 , , i x are x integer values taken from the set { 1 , 2 , , n } of k integer values, C n x denotes the binomial coefficient and C n x = n ! x ! ( n x ) ! .
In this section, we will propose the interval-valued intuitionistic fuzzy Dombi DHM (IVIFDDHM) operator.
Definition 13.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. The IVIFDDHM operator is as follows:
IVIFDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x φ ˜ i j x ) ) 1 C n x
Theorem 3.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. The fused value by IVIFDDHM operators is also an IVIFN where
IVIFDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x φ ˜ i j x ) ) 1 C n x = ( [ 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( e i j 1 e i j ) λ ) 1 λ , 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( 1 g i j g i j ) λ ) 1 λ , 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( 1 h i j h i j ) λ ) 1 λ ] )
Proof. 
j = 1 x φ ˜ i j = ( [ 1 1 1 + ( j = 1 x ( e i j 1 e i j ) λ ) 1 λ , 1 1 1 + ( j = 1 x ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 + ( j = 1 x ( 1 g i j g i j ) λ ) 1 λ , 1 1 + ( j = 1 x ( 1 h i j h i j ) λ ) 1 λ ] )
Thus,
j = 1 x φ ˜ i j x = ( [ 1 1 1 + ( 1 x j = 1 x ( e i j 1 e i j ) λ ) 1 λ , 1 1 1 + ( 1 x j = 1 x ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 + ( 1 x j = 1 x ( 1 g i j g i j ) λ ) 1 λ , 1 1 + ( 1 x j = 1 x ( 1 h i j h i j ) λ ) 1 λ ] )
Therefore,
1 i 1 < < i x n ( j = 1 x φ ˜ i j x ) = ( [ 1 1 + ( 1 i 1 < < i x n x j = 1 x ( e i j 1 e i j ) λ ) 1 λ , 1 1 + ( 1 i 1 < < i x n x j = 1 x ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 i 1 < < i x n x j = 1 x ( 1 g i j g i j ) λ ) 1 λ , 1 1 1 + ( 1 i 1 < < i x n x j = 1 x ( 1 h i j h i j ) λ ) 1 λ ] )
Therefore,
IVIFDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x φ ˜ i j x ) ) 1 C n x = ( [ 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( e i j 1 e i j ) λ ) 1 λ , 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( 1 g i j g i j ) λ ) 1 λ , 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 x ( 1 h i j h i j ) λ ) 1 λ ] )
Thus, Equation (28) is right. □
Example 3.
Let φ ˜ 1 = ( [ 0.2 , 0.4 ] , [ 0.3 , 0.6 ] ) , φ ˜ 2 = ( [ 0.1 , 0.3 ] , [ 0.2 , 0.5 ] ) , φ ˜ 3 = ( [ 0.3 , 0.5 ] , [ 0.1 , 0.2 ] ) and φ ˜ 4 = ( [ 0.1 , 0.4 ] , [ 0.3 , 0.5 ] ) be four IVIFNs, and x = 2 , λ = 3 ,
e i j 1 e i j = ( 0.2500 , 0.1111 , 0.4286 , 0.1111 ) , f i j 1 f i j = ( 0.6667 , 0.4286 , 1.0000 , 0.6667 ) 1 g i j g i j = ( 2.3333 , 4.0000 , 9.0000 , 2.3333 ) , 1 h i j h i j = ( 0.6667 , 1.0000 , 4.0000 , 1.0000 )
Then according to Equation (28), we have
IVIFDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x φ ˜ i j x ) ) 1 C n x = { [ 1 / ( 1 + ( 2 C 4 2 × ( 1 0.2500 3 + 0.1111 3 + 1 0.2500 3 + 0.4286 3 + 1 0.2500 3 + 0.1111 3 + 1 0.1111 3 + 0.4286 3 + 1 0.1111 3 + 0.1111 3 + 1 0.4286 3 + 0.1111 3 ) ) 1 3 ) , 1 / ( 1 + ( 2 C 4 2 × ( 1 0.6667 3 + 0.4286 3 + 1 0.6667 3 + 1 . 0000 3 + 1 0.6667 3 + 0.6667 3 + 1 0.4286 3 + 1 . 0000 3 + 1 0.4286 3 + 0.6667 3 + 1 1 . 0000 3 + 0.6667 3 ) ) 1 3 ) ] , [ 1 1 / ( 1 + ( 2 C 4 2 × ( 1 2.3333 3 + 4.0000 3 + 1 2.3333 3 + 9.0000 3 + 1 2.3333 3 + 2.3333 3 + 1 4.0000 3 + 9.0000 3 + 1 4.0000 3 + 2.3333 3 + 1 9.0000 3 + 2.3333 3 ) ) 1 3 ) , 1 1 / ( 1 + ( 2 C 4 2 × ( 1 0.6667 3 + 1 . 0000 3 + 1 0.6667 3 + 4.0000 3 + 1 0.6667 3 + 1 . 0000 3 + 1 1 . 0000 3 + 4.0000 3 + 1 1 . 0000 3 + 1 . 0000 3 + 1 4.0000 3 + 1 . 0000 3 ) ) 1 3 ) ] } = ( [ 0.1523 , 0.4052 ] , [ 0.2217 , 0.4699 ] )
The IVIFDDHM operator has the following properties.
Property 6.
(Idempotency) If φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) are equal, then
IVIFDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = φ ˜
Property 7.
(Monotonicity) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) and θ ˜ j = ( [ r j , s j ] , [ m j , n j ] ) ( j = 1 , 2 , , n ) be two sets of IVIFNs. If e j r j , f j s j   a n d   g j m j , h j n j hold for all j , then
IVIFDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) IVIFDDHM ( x ) ( θ ˜ 1 , θ ˜ 2 , , θ ˜ n )
Property 8.
(Boundedness) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. If φ ˜ i + = ( ( [ max i ( e j ) , max i ( f j ) ] , [ min i ( g j ) , min i ( h j ) ] ) ) and φ ˜ i = ( [ min i ( e j ) , min i ( f j ) ] , [ max i ( g j ) , max i ( h j ) ] ) then
φ ˜ IVIFDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) φ ˜ +

3.4. The IVIFWDDHM Operator

In practical MADM, it is important to pay attention to attribute weights; we propose the interval-valued intuitionistic weighted Dombi DHM (IVIFWDDHM) operator.
Definition 14.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs with their weight vector be w i = ( w 1 , w 2 , , w n ) T , thereby satisfying w i [ 0 , 1 ] and i = 1 n w i = 1 .
IVIFWDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x w i j φ ˜ i j x ) ) 1 C n x
Theorem 4.
Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. The fused value by IVIFWDDHM operators is also an IVIFN where
IVIFWDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x w i j φ ˜ i j x ) ) 1 C n x = ( [ 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( e i j 1 e i j ) λ ) 1 λ , 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( 1 g i j g i j ) λ ) 1 λ , 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( 1 h i j h i j ) λ ) 1 λ ] )
Proof. 
w i j φ ˜ i j = ( [ 1 1 1 + ( w i j ( e i j 1 e i j ) λ ) 1 λ , 1 1 1 + ( w i j ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 + ( w i j ( 1 g i j g i j ) λ ) 1 λ , 1 1 + ( w i j ( 1 h i j h i j ) λ ) 1 λ ] )
Then,
j = 1 x w i j φ ˜ i j = ( [ 1 1 1 + ( j = 1 n w i j ( e i j 1 e i j ) λ ) 1 λ , 1 1 1 + ( j = 1 n w i j ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 + ( j = 1 n w i j ( 1 g i j g i j ) λ ) 1 λ , 1 1 + ( j = 1 n w i j ( 1 h i j h i j ) λ ) 1 λ ] )
Thus,
j = 1 x w i j φ ˜ i j x = ( [ 1 1 1 + ( 1 x j = 1 n w i j ( e i j 1 e i j ) λ ) 1 λ , 1 1 1 + ( 1 x j = 1 n w i j ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 + ( 1 x j = 1 n w i j ( 1 g i j g i j ) λ ) 1 λ , 1 1 + ( 1 x j = 1 n w i j ( 1 h i j h i j ) λ ) 1 λ ] )
Therefore,
1 i 1 < < i x n ( j = 1 x w i j φ ˜ i j x ) = ( [ 1 1 + ( 1 i 1 < < i x n x j = 1 n w i j ( e i j 1 e i j ) λ ) 1 λ , 1 1 + ( 1 i 1 < < i x n x j = 1 n w i j ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 i 1 < < i x n x j = 1 n w i j ( 1 g i j g i j ) λ ) 1 λ , 1 1 1 + ( 1 i 1 < < i x n x j = 1 n w i j ( 1 h i j h i j ) λ ) 1 λ ] )
Therefore,
IVIFWDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x w i j φ ˜ i j x ) ) 1 C n x = ( [ 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( e i j 1 e i j ) λ ) 1 λ , 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( f i j 1 f i j ) λ ) 1 λ ] , [ 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( 1 g i j g i j ) λ ) 1 λ , 1 1 1 + ( 1 C n x 1 i 1 < < i x n x j = 1 n w i j ( 1 h i j h i j ) λ ) 1 λ ] )
Thus, Equation (37) is right. □
Example 4.
Let φ ˜ 1 = ( [ 0.2 , 0.4 ] , [ 0.3 , 0.6 ] ) , φ ˜ 2 = ( [ 0.1 , 0.3 ] , [ 0.2 , 0.5 ] ) , φ ˜ 3 = ( [ 0.3 , 0.5 ] , [ 0.1 , 0.2 ] ) and φ ˜ 4 = ( [ 0.1 , 0.4 ] , [ 0.3 , 0.5 ] ) be four IVIFNs, and x = 2 , λ = 3 , w = ( 0.4 , 0.1 , 0.2 , 0.3 ) ,
e i j 1 e i j = ( 0.2500 , 0.1111 , 0.4286 , 0.1111 ) , f i j 1 f i j = ( 0.6667 , 0.4286 , 1.0000 , 0.6667 ) 1 g i j g i j = ( 2.3333 , 4.0000 , 9.0000 , 2.3333 ) , 1 h i j h i j = ( 0.6667 , 1.0000 , 4.0000 , 1.0000 )
Then according to Equation (37), we have
IVIFWDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) = ( 1 i 1 < < i x n ( j = 1 x w i j φ ˜ i j x ) ) 1 C n x = { [ 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 0.2500 3 + 0 . 1 × 0.1111 3 + 1 0 . 4 × 0.2500 3 + 0 . 2 × 0.4286 3 + 1 0 . 4 × 0.2500 3 + 0 . 3 × 0.1111 3 + 1 0 . 1 × 0.1111 3 + 0 . 2 × 0.4286 3 + 1 0 . 1 × 0.1111 3 + 0 . 3 × 0.1111 3 + 1 0 . 2 × 0.4286 3 + 0 . 3 × 0.1111 3 ) ) 1 3 ) , 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 0.6667 3 + 0 . 1 × 0.4286 3 + 1 0 . 4 × 0.6667 3 + 0 . 2 × 1 . 0000 3 + 1 0 . 4 × 0.6667 3 + 0 . 3 × 0.6667 3 + 1 0 . 1 × 0.4286 3 + 0 . 2 × 1 . 0000 3 + 1 0 . 1 × 0.4286 3 + 0 . 3 × 0.6667 3 + 1 0 . 2 × 1 . 0000 3 + 0 . 3 × 0.6667 3 ) ) 1 3 ) ] , [ 1 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 2.3333 3 + 0 . 1 × 4.0000 3 + 1 0 . 4 × 2.3333 3 + 0 . 2 × 9.0000 3 + 1 0 . 4 × 2.3333 3 + 0 . 3 × 2.3333 3 + 1 0 . 1 × 4.0000 3 + 0 . 2 × 9.0000 3 + 1 0 . 1 × 4.0000 3 + 0 . 3 × 2.3333 3 + 1 0 . 2 × 9.0000 3 + 0 . 3 × 2.3333 3 ) ) 1 3 ) , 1 1 / ( 1 + ( 2 C 4 2 × ( 1 0 . 4 × 0.6667 3 + 0 . 1 × 1 . 0000 3 + 1 0 . 4 × 0.6667 3 + 0 . 2 × 4.0000 3 + 1 0 . 4 × 0.6667 3 + 0 . 3 × 1 . 0000 3 + 1 0 . 1 × 1 . 0000 3 + 0 . 2 × 4.0000 3 + 1 0 . 1 × 1 . 0000 3 + 0 . 3 × 1 . 0000 3 + 1 0 . 2 × 4.0000 3 + 0 . 3 × 1 . 0000 3 ) ) 1 3 ) ] } = ( [ 0.0917 , 0.2962 ] , [ 0.3283 , 0.6086 ] )
Then we give some properties of the IVIFWDDHM operator.
Property 9.
(Monotonicity) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) and θ ˜ j = ( [ r j , s j ] , [ m j , n j ] ) ( j = 1 , 2 , , n ) be two sets of IVIFNs. If e j r j , f j s j   a n d   g j m j , h j n j hold for all j , then
IVIFWDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) IVIFWDDHM ( x ) ( θ ˜ 1 , θ ˜ 2 , , θ ˜ n )
The proof is similar to IVIFWDHM, thus, it is omitted here.
Property 10.
(Boundedness) Let φ ˜ j = ( [ e j , f j ] , [ g j , h j ] ) ( j = 1 , 2 , , n ) be a set of IVIFNs. If φ ˜ i + = ( ( [ max i ( e j ) , max i ( f j ) ] , [ min i ( g j ) , min i ( h j ) ] ) ) and φ ˜ i = ( [ min i ( e j ) , min i ( f j ) ] , [ max i ( g j ) , max i ( h j ) ] ) then
φ ˜ IVIFWDDHM ( x ) ( φ ˜ 1 , φ ˜ 2 , , φ ˜ n ) φ ˜ +

4. Example and Comparison

4.1. Numerical Example

With the development of the economy and society and the deepening of aging, “Senior tourism” continues to heat up. Elderly tourism has become a tourist market which cannot be ignored at present and in the future, and contains a tremendous potential for development. The tourism destinations are also actively involved in the development of this market. However, there are still many issues in the tourism service for the elderly tourists in the tourism destination. Although some researches on elderly tourism in China has been on the rise in recent years, many researches are conducted from the points of the consumption behavior of the elderly, the development of the elderly tourism market and the development of elderly tourism products, but the research on elderly tourism services, especially the quality of elderly tourism services, is relatively scarce. Additionally, the problems of evaluating the elderly tourism service quality in tourism destination are classical MADM problems [55,56,57,58,59,60,61,62]. Thus, we give an example to solve the MADM problems for evaluating the elderly tourism service quality in tourism destination with IVIFNs. There are five possible tourism scenic spots A i ( i = 1 , 2 , 3 , 4 , 5 ) to assess. The experts use the four attributes to assess the five tourism scenic spots: ① G1 is the resource safety value; ② G2 is the infrastructure construction value; ③ G3 is the income distribution value; ④ G4 is the promotion employment value. The five possible tourism scenic spots are to be assessed with IVIFNs (whose weighting vector ω = ( 0.4 , 0.1 , 0.3 , 0.2 ) ), as shown in the Table 1.
Then, we use the approach developed for selecting the best tourism scenic spots.
Step 1. According to IVIFNs r i j ( i = 1 , 2 , 3 , 4 , 5 , j = 1 , 2 , 3 , 4 ) , we fuse all IVIFNs r i j by the IVIFWDHM (IVIFWDDHM) operator to have the IVIFNs A i ( i = 1 , 2 , 3 , 4 , 5 ) of the tourism scenic spots A i . Let x = 2 , then the fused results are in Table 2.
Step 2. Using Table 2, the score values of the tourism scenic spots are in Table 3.
Step 3. Using Table 3, the order of tourism scenic spots is listed in Table 4. Additionally, the best tourism scenic spot is A3.

4.2. Influence Analysis

In order to depict the effects on the ordering by altering parameters of x in the IVIFWDHM (IVIFWDDHM) operators, the analysis results are listed in Table 5 and Table 6.

4.3. Comparative Analysis

We compare the IVIFWDHM and IVIFWDDHM operators with the IVIFWA operator [54], IVIFWG operator [5], gray relational analysis method [8], and the correlation coefficient [63]. The results are listed in Table 7.
From above, we can get the same best tourism scenic spots and the four methods’ ranking results are slightly different. However, the existing methods with IVIFNs do not consider the relationship information among the arguments. Our proposed IVIFWDHM and IVIFWDDHM operators consider the relationship among the aggregated arguments.
Additionally, Xu and Chen [9] defined the interval-valued intuitionistic fuzzy Bonferroni mean for aggregating the IVIFNs. However, these Bonferroni mean for aggregating the IVIFNs only consider the relationship information between two arguments and do not consider the relationship information among more than two arguments.

5. Conclusions

In this paper, we investigate the MADM problems with IVIFNs. Then, we utilize the HM operator and Dombi operations to design some HM operators with IVIFNs: IVIFDHM operator, IVIFWDHM operator, IVIFDDHM operator and IVIFWDDHM operator. The main characteristic of these operators are investigated. Then, we have used the IVIFWDHM and IVIFWDDHM operators to propose two models for MADM problems with IVIFNs. Finally, a real example for evaluating the elderly tourism service quality in the tourism destination is used to show the developed approach. In the subsequent studies, the extension and application of IVIFNs needs to be studied in many other uncertain environments and other applications.

Author Contributions

L.W., G.W., H.G., and Y.W. conceived and worked together to achieve this work, L.W. compiled the computing program by Matlab and analyzed the data, L.W. and G.W. wrote the paper. Finally, all the authors have read and approved the final manuscript.

Funding

The work was supported by the National Natural Science Foundation of China under Grant No. 71571128, the National Social Science Foundation of China under Grant No. 16CGL026 and the Construction Plan of Scientific Research Innovation Team for Colleges and Universities in Sichuan Province (15TD0004).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Atanassov, K.T. More on Intuitionistic Fuzzy-Sets. Fuzzy Sets Syst. 1989, 33, 37–45. [Google Scholar] [CrossRef]
  2. Atanassov, K.T.; Gargov, G.K. Intuitionistic Fuzzy-Logic. Dokl. Bolg. Akad. Nauk. 1990, 43, 9–12. [Google Scholar]
  3. Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy-sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
  4. Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
  5. Xu, Z.S.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
  6. Xu, Z.S.; Chen, J. On Geometric Aggregation Ove Interval-Valued Intuitionistic Fuzzy Information. In Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, 24–27 August 2007. [Google Scholar]
  7. Wei, G.W. Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Appl. Soft Comput. 2010, 10, 423–431. [Google Scholar] [CrossRef]
  8. Wei, G.W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst. Appl. 2011, 38, 11671–11677. [Google Scholar] [CrossRef]
  9. Xu, Z.S.; Chen, Q. A multi-criteria decision making procedure based on interval-valued intuitionistic fuzzy bonferroni means. J. Syst. Sci. Syst. Eng. 2011, 20, 217–228. [Google Scholar] [CrossRef]
  10. Deng, X.M.; Wei, G.W.; Gao, H.; Wang, J. Models for Safety Assessment of Construction Project with Some 2-Tuple Linguistic Pythagorean Fuzzy Bonferroni Mean Operators. IEEE Access 2018, 6, 52105–52137. [Google Scholar] [CrossRef]
  11. Tang, X.Y.; Huang, Y.H.; Wei, G.W. Approaches to Multiple-Attribute Decision-Making Based on Pythagorean 2-Tuple Linguistic Bonferroni Mean Operators. Algorithms 2018, 11, 5. [Google Scholar] [CrossRef]
  12. Tang, X.Y.; Wei, G.W. Models for Green Supplier Selection in Green Supply Chain Management with Pythagorean 2-Tuple Linguistic Information. IEEE Access 2018, 6, 18042–18060. [Google Scholar] [CrossRef]
  13. Wang, J.; Tang, X.Y.; Wei, G.W. Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators. Algorithms 2018, 11, 2. [Google Scholar] [CrossRef]
  14. Wang, J.; Wei, G.W.; Wei, Y. Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators. Symmetry 2018, 10, 131. [Google Scholar] [CrossRef]
  15. Wei, G.W. Picture 2-Tuple Linguistic Bonferroni Mean Operators and Their Application to Multiple Attribute Decision Making. Int. J. Fuzzy Syst. 2017, 19, 997–1010. [Google Scholar] [CrossRef]
  16. Wei, G.W. Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Kybernetes 2017, 46, 1777–1800. [Google Scholar] [CrossRef]
  17. Wei, G.W.; Gao, H.; Wang, J.; Huang, Y.H. Research on Risk Evaluation of Enterprise Human Capital Investment With Interval-Valued Bipolar 2-Tuple Linguistic Information. IEEE Access 2018, 6, 35697–35712. [Google Scholar] [CrossRef]
  18. Chen, T.Y. The Inclusion-Based LINMAP Method for Multiple Criteria Decision Analysis Within an Interval-Valued Atanassov’s Intuitionistic Fuzzy Environment. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 1325–1360. [Google Scholar] [CrossRef]
  19. Hashemi, H.; Bazargan, J.; Mousavi, S.M.; Vandani, B. An extended compromise ratio model with an application to reservoir flood control operation under an interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 2014, 38, 3495–3511. [Google Scholar] [CrossRef]
  20. Liu, B.S.; Chen, Y.; Shen, Y.H.; Sun, H.; Xu, X.H. A complex multi-attribute large-group decision making method based on the interval-valued intuitionistic fuzzy principal component analysis model. Soft Comput. 2014, 18, 2149–2160. [Google Scholar] [CrossRef]
  21. Chen, T.Y. IVIF-PROMETHEE outranking methods for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets. Fuzzy Optim. Decis. Mak. 2015, 14, 173–198. [Google Scholar] [CrossRef]
  22. Dugenci, M. A new distance measure for interval valued intuitionistic fuzzy sets and its application to group decision making problems with incomplete weights information. Appl. Soft Comput. 2016, 41, 120–134. [Google Scholar] [CrossRef]
  23. Garg, H. A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Appl. Soft Comput. 2016, 38, 988–999. [Google Scholar] [CrossRef]
  24. Thong, N.T.; Son, L.H. HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis. Expert Syst. Appl. 2015, 42, 3682–3701. [Google Scholar] [CrossRef]
  25. Son, L.H. Measuring analogousness in picture fuzzy sets: From picture distance measures to picture association measures. Fuzzy Optim. Decis. Mak. 2017, 16, 359–378. [Google Scholar] [CrossRef]
  26. Son, L.H.; Thong, P.H. Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences. Appl. Intell. 2017, 46, 1–15. [Google Scholar] [CrossRef]
  27. Wei, G.W. Some Cosine Similarity Measures for Picture Fuzzy Sets and Their Applications to Strategic Decision Making. Informatica 2017, 28, 547–564. [Google Scholar] [CrossRef]
  28. Wei, G.W. Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 713–724. [Google Scholar] [CrossRef]
  29. Wei, G.W. Some Similarity Measures for Picture Fuzzy Sets and Their Applications. Iran. J. Fuzzy Syst. 2018, 15, 77–89. [Google Scholar]
  30. Wei, G.W. TODIM Method for Picture Fuzzy Multiple Attribute Decision Making. Informatica 2018, 29, 555–566. [Google Scholar] [CrossRef]
  31. Wei, G.W. Picture Fuzzy Hamacher Aggregation Operators and their Application to Multiple Attribute Decision Making. Fundam. Inform. 2018, 157, 271–320. [Google Scholar] [CrossRef]
  32. Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with picture fuzzy information. Int. J. Mach. Learn. Cybern. 2018, 9, 713–719. [Google Scholar] [CrossRef]
  33. Wei, G.W.; Gao, H. The Generalized Dice Similarity Measures for Picture Fuzzy Sets and Their Applications. Informatica 2018, 29, 107–124. [Google Scholar] [CrossRef]
  34. Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
  35. Garg, H. A Novel Correlation Coefficients between Pythagorean Fuzzy Sets and Its Applications to Decision-Making Processes. Int. J. Intell. Syst. 2016, 31, 1234–1252. [Google Scholar] [CrossRef]
  36. Garg, H. New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multicriteria decision-making. Int. J. Intell. Syst. 2018, 33, 653–683. [Google Scholar] [CrossRef]
  37. Garg, H. A Linear Programming Method Based on an Improved Score Function for Interval-Valued Pythagorean Fuzzy Numbers and Its Application to Decision-Making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2018, 26, 67–80. [Google Scholar] [CrossRef]
  38. Li, Z.X.; Wei, G.W.; Lu, M. Pythagorean Fuzzy Hamy Mean Operators in Multiple Attribute Group Decision Making and Their Application to Supplier Selection. Symmetry 2018, 10, 505. [Google Scholar] [CrossRef]
  39. Liang, D.C.; Darko, A.P.; Xu, Z.S. Interval-valued Pythagorean fuzzy extended Bonferroni mean for dealing with heterogenous relationship among attributes. Int. J. Intell. Syst. 2018, 33, 1381–1411. [Google Scholar] [CrossRef]
  40. Wang, J.; Wei, G.W.; Gao, H. Approaches to Multiple Attribute Decision Making with Interval-Valued 2-Tuple Linguistic Pythagorean Fuzzy Information. Mathematics 2018, 6, 201. [Google Scholar] [CrossRef]
  41. Wei, G. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making (vol. 33, pp. 2119, 2017). J. Intell. Fuzzy Syst. 2018, 34, 2817–2824. [Google Scholar] [CrossRef]
  42. Wei, G.W.; Lu, M. Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018, 33, 1043–1070. [Google Scholar] [CrossRef]
  43. Wei, G.W.; Lu, M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 169–186. [Google Scholar] [CrossRef]
  44. Wei, G.W.; Lu, M.; Tang, X.Y.; Wei, Y. Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1197–1233. [Google Scholar] [CrossRef]
  45. Gulistan, M.; Wahab, H.A.; Smarandache, F.; Khan, S.; Shah, S.I.A. Some Linguistic Neutrosophic Cubic Mean Operators and Entropy with Applications in a Corporation to Choose an Area Supervisor. Symmetry 2018, 10, 428. [Google Scholar] [CrossRef]
  46. Liu, P.D.; You, X.L. Some linguistic neutrosophic Hamy mean operators and their application to multi-attribute group decision making. PLoS ONE 2018, 13, e0193027. [Google Scholar] [CrossRef] [PubMed]
  47. Singh, S.; Garg, H. Symmetric Triangular Interval Type-2 Intuitionistic Fuzzy Sets with Their Applications in Multi Criteria Decision Making. Symmetry 2018, 10, 401. [Google Scholar] [CrossRef]
  48. Hara, Y.; Uchiyama, M.; Takahasi, S.E. A refinement of various mean inequalities. J. Inequal. Appl. 1998, 2, 387–395. [Google Scholar] [CrossRef]
  49. Wu, S.J.; Wang, J.; Wei, G.W.; Wei, Y. Research on Construction Engineering Project Risk Assessment with Some 2-Tuple Linguistic Neutrosophic Hamy Mean Operators. Sustainability 2018, 10, 1536. [Google Scholar] [CrossRef]
  50. Dombi, J. A General-Class of Fuzzy Operators, the Demorgan Class of Fuzzy Operators and Fuzziness Measures Induced by Fuzzy Operators. Fuzzy Sets Syst. 1982, 8, 149–163. [Google Scholar] [CrossRef]
  51. Khan, Q.; Liu, P.D.; Mahmood, T.; Smarandache, F.; Ullah, K. Some Interval Neutrosophic Dombi Power Bonferroni Mean Operators and Their Application in Multi-Attribute Decision-Making. Symmetry 2018, 10, 459. [Google Scholar] [CrossRef]
  52. Liu, P.D.; Liu, J.L.; Chen, S.M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 2018, 69, 1–24. [Google Scholar] [CrossRef]
  53. Wei, G.; Wei, Y. Some single-valued neutrosophic dombi prioritized weighted aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2018, 35, 2001–2013. [Google Scholar] [CrossRef]
  54. Xu, Z.S.; Yager, R.R. Dynamic intuitionistic fuzzy multi-attribute decision making. Int. J. Approx. Reason. 2008, 48, 246–262. [Google Scholar] [CrossRef]
  55. Gao, H.; Lu, M.; Wei, G.W.; Wei, Y. Some Novel Pythagorean Fuzzy Interaction Aggregation Operators in Multiple Attribute Decision Making. Fundam. Inform. 2018, 159, 385–428. [Google Scholar] [CrossRef]
  56. Gao, H.; Wei, G.W.; Huang, Y.H. Dual Hesitant Bipolar Fuzzy Hamacher Prioritized Aggregation Operators in Multiple Attribute Decision Making. IEEE Access 2018, 6, 11508–11522. [Google Scholar] [CrossRef]
  57. Huang, Y.H.; Wei, G.W. TODIM method for Pythagorean 2-tuple linguistic multiple attribute decision making. J. Intell. Fuzzy Syst. 2018, 35, 901–915. [Google Scholar] [CrossRef]
  58. Wang, J.; Wei, G.W.; Lu, M. An Extended VIKOR Method for Multiple Criteria Group Decision Making with Triangular Fuzzy Neutrosophic Numbers. Symmetry 2018, 10, 497. [Google Scholar] [CrossRef]
  59. Wang, J.; Wei, G.W.; Lu, M. TODIM Method for Multiple Attribute Group Decision Making under 2-Tuple Linguistic Neutrosophic Environment. Symmetry 2018, 10, 486. [Google Scholar] [CrossRef]
  60. Wei, G.W.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1426–1458. [Google Scholar] [CrossRef]
  61. Wei, G.W.; Wei, Y. Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications. Int. J. Intell. Syst. 2018, 33, 634–652. [Google Scholar] [CrossRef]
  62. Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar Fuzzy Hamacher Aggregation Operators in Multiple Attribute Decision Making. Int. J. Fuzzy Syst. 2018, 20, 1–12. [Google Scholar] [CrossRef]
  63. Wei, G.W.; Wang, H.J.; Lin, R. Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision-making with incomplete weight information. Knowl. Inf. Syst. 2011, 26, 337–349. [Google Scholar] [CrossRef]
Table 1. The IVIFN decision matrix.
Table 1. The IVIFN decision matrix.
G1G2G3G4
A1([0.5,0.6],[0.1,0.2])([0.4,0.6],[0.2,0.4])([0.2,0.3],[0.1,0.4])([0.3,0.5],[0.1,0.3])
A2([0.3,0.4],[0.2,0.5])([0.4,0.5],[0.1,0.2])([0.6,0.7],[0.2,0.3])([0.3,0.4],[0.2,0.4])
A3([0.7,0.8],[0.1,0.2])([0.6,0.8],[0.1,0.2])([0.4,0.7],[0.1,0.3])([0.5,0.6],[0.1,0.4])
A4([0.6,0.7],[0.1,0.3])([0.2,0.3],[0.6,0.7])([0.4,0.6],[0.2,0.4])([0.1,0.3],[0.4,0.5])
A5([0.4,0.5],[0.1,0.3])([0.1,0.2],[0.5,0.7])([0.3,0.4],[0.5,0.6])([0.5,0.7],[0.1,0.2])
Table 2. The fused results of the tourism scenic spots by the IVIFWDHM (IVIFWDDHM) operator.
Table 2. The fused results of the tourism scenic spots by the IVIFWDHM (IVIFWDDHM) operator.
IVIFWDHMIVIFWDDHM
A1([0.4739,0.631],[0.0767,0.2244])([0.2328,0.3929],[0.1613,0.4415])
A2([0.5148,0.6181],[0.1262,0.2546])([0.2666,0.3582],[0.2507,0.4565])
A3([0.6774,0.8127],[0.0639,0.1873])([0.4166,0.6356],[0.1531,0.3644])
A4([0.4237,0.6055],[0.1902,0.3538])([0.1483,0.2887],[0.4442,0.5720])
A5([0.4192,0.5342],[0.1182,0.3106])([0.2591,0.3607],[0.4856,0.6062])
Table 3. The score values of tourism scenic spots.
Table 3. The score values of tourism scenic spots.
AlternativesIVIFWDHMIVIFWDDHM
A10.40190.0115
A20.3760−0.0412
A30.61940.2673
A40.2426−0.2896
A50.2623−0.2360
Table 4. The order of the tourism scenic spots.
Table 4. The order of the tourism scenic spots.
MethodsOrder
IVIFWDHMA3 > A1 > A2 > A5 > A4
IVIFWDDHMA3 > A1 > A2 > A5 > A4
Table 5. The ordering results for the IVIFWDHM operator with different parameters.
Table 5. The ordering results for the IVIFWDHM operator with different parameters.
S(A1)S(A2)S(A3)S(A4)S(A5)Order
x = 1 0.47910.54360.68850.42430.4936A3 > A2 > A5 > A1 > A4
x = 2 0.40190.37600.61940.24260.2623A3 > A1 > A2 > A5 > A4
x = 3 0.33730.29700.57030.08780.0506A3 > A1 > A2 > A4 > A5
x = 4 0.26430.26510.5438−0.0055−0.0284A3 > A2 > A1 > A4 > A5
Table 6. The ordering results for the IVIFWDDHM operator with different parameters.
Table 6. The ordering results for the IVIFWDDHM operator with different parameters.
S(A1)S(A2)S(A3)S(A4)S(A5)Order
x = 1 −0.1388−0.10360.1650−0.5660−0.5671A3 > A2 > A1 > A4 > A5
x = 2 0.0115−0.04120.2673−0.2896−0.2360A3 > A1 > A2 > A5 > A4
x = 3 0.06940.02060.31430.02320.0740A3 > A5 > A1 > A4 > A2
x = 4 0.13540.12120.36610.14960.1163A3 > A4 > A1 > A2 > A5
Table 7. The order of the tourism scenic spots.
Table 7. The order of the tourism scenic spots.
MethodsOrder
IVIFWA operator [54]A3 > A1 > A4 > A2 > A5
IVIFWG operator [5]A3 > A1 > A2 > A4 > A5
Gray Relational Analysis Method [8]A3 > A5 > A1 > A2 > A4
Correlation Coefficient [63]A3 > A1 > A2 > A4 > A5

Share and Cite

MDPI and ACS Style

Wu, L.; Wei, G.; Gao, H.; Wei, Y. Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination. Mathematics 2018, 6, 294. https://doi.org/10.3390/math6120294

AMA Style

Wu L, Wei G, Gao H, Wei Y. Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination. Mathematics. 2018; 6(12):294. https://doi.org/10.3390/math6120294

Chicago/Turabian Style

Wu, Liangping, Guiwu Wei, Hui Gao, and Yu Wei. 2018. "Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination" Mathematics 6, no. 12: 294. https://doi.org/10.3390/math6120294

APA Style

Wu, L., Wei, G., Gao, H., & Wei, Y. (2018). Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination. Mathematics, 6(12), 294. https://doi.org/10.3390/math6120294

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop