Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity
"> Figure 1
<p>Extent of the study area and the spatial distribution of the reference points. Background image acquired by the Landsat 5 TM satellite (data available from the U.S. Geological Survey Earth Explorer).</p> "> Figure 2
<p>The number of stands with more than 60% of tree species per site index; site index code: −1-Ib, 0–Ia, 1–I, 2-II, 3-III, 4-IV, 5-V, 6-Va.</p> "> Figure 3
<p>Allometric model relating AGB to GSV using <span class="html-italic">in situ</span> measurements of forest phytomass.</p> "> Figure 4
<p>(<b>A</b>) presents box plots for four calculated ratios between backscatter images (acquired on 23 August 2010 and 8 October 2010) and coherence acquired in winter 2010 (5 January and 20 February); (<b>B</b>) and (<b>C</b>) present the ratio as a function of aboveground biomass (AGB).</p> "> Figure 5
<p>Subset of SAR products used for AGB retrieval. (<b>A</b>): backscatter data acquired on 23 August 2010 in HV polarization in dB; (<b>B</b>): filtered backscatter image in dB; (<b>C</b>): coherence between 5 January 2010 and 20 February 2010; (<b>D</b>): normalized ratio between acquired on 23 August 2010 in HV polarization and coherence (5 January & 20 February 2010).</p> "> Figure 6
<p>Number of measurements in selected AGB class.</p> "> Figure 7
<p>Evaluation of MaxEnt model performance using Area Under the Receiver Operator Curve (AUC) for testing dataset (<b>A</b>) with unfiltered and (<b>B</b>) with filtered backscatter data; aboveground biomass (AGB) classes 0: 0–40, 40: 40–60, 60: 60–80, 80: 80–100, 100: 100–120, 120: 120–140, 140: >140 t·ha<sup>−1</sup>.</p> "> Figure 8
<p>Predictor importance presented as percent contribution (<b>A</b>) dataset with unfiltered and (<b>B</b>) with filtered backscatter data.</p> "> Figure 9
<p>Coherence, backscatter, and normalized ratio contributions <span class="html-italic">versus</span> AGB classes. (<b>A</b>) Dataset with unfiltered or (<b>B</b>) filtered backscatter data. Class 0 represents AGB values from 0 to 40, 40: 40–60, 60: 60–80, 80: 80–100, 100: 100–120, 120: 120–140, 140: >140 t·ha<sup>−1</sup>.</p> "> Figure 10
<p>Predictor importance presented as increase in MSE for (<b>A</b>) unfiltered dataset and (<b>B</b>) dataset with filtered backscatter data.</p> "> Figure 11
<p>AGB map generated using the MaxEnt algorithm and a dataset with unfiltered backscatter data.</p> "> Figure 12
<p>AGB map generated using the MaxEnt algorithm and a dataset with filtered backscatter data.</p> "> Figure 13
<p>AGB map generated using the Random Forests algorithm and a dataset with unfiltered backscatter data.</p> "> Figure 14
<p>AGB map generated using the Random Forests algorithm and a dataset with filtered backscatter data.</p> "> Figure 15
<p>AGB difference maps between updated forest inventory (<span class="html-italic">in situ</span>) and SAR-derived AGB. (<b>A</b>) MaxEnt model—unfiltered data; (<b>B</b>) Random Forests—unfiltered data; (<b>C</b>) MaxEnt model with filtered backscatter; (<b>D</b>) Random Forests with filtered backscatter.</p> ">
Abstract
:1. Introduction
Reference | SAR Sensor Wavelength | Estimated Variable | Model | Predictors | Spatial Resolution | Estimation Error RMSE (Units As Estimated Variable)/Relative RMSE (%) |
---|---|---|---|---|---|---|
[55] | JERS-1 L-band | GSV (m3∙ha−1) | Semi-empirical Water-Cloud type model | Backscatter in σ°HH, 9 images | Stand-wise > 8 ha | 57–87/33–51 |
[50] | ERS-1/2 C-band | GSV (m3·ha−1) | Semi-empirical model Interforemetric Water Cloud Model | Interferometric coherence adjusted by environmental conditions (relative stocking, stand size, topography) | Stand-wise > 3 ha | 45–75/25–41 |
[56] | Envisat ASAR C-band | GSV (m3·ha−1) | BIOMASAR—semi-empirical Water-Cloud type model | Backscatter in γ°HH and γ°VV polarization, tens of images | 1 km | -/34.2 |
[57] | Envisat ASAR C-band | GSV (m3·ha−1) | BIOMASAR—semi-empirical Water-Cloud type model | Backscatter in γ°HH and γ°VV, mean 93 observations | 0.5° | -/15 |
[51] | ALOS PALSAR L-band | AGB (t·ha−1) | Single and multivariate regression, semi-empirical Water-Cloud type model | Backscatter in σ°HH and σ°VV, 1-5 images | Stand-wise > 10 ha | 46–55/25–32 |
[58,59] | ALOS PALSAR L-band | GSV (m3·ha−1) | Machine learning approach—Random Forest | 4 ALOS PALSAR mosaics, backscatter in γ°HH and γ°HV | 25 m | 54.4/39.4 |
[52] | ALOS PALSAR L-band | GSV (m3·ha−1) | Empirical exponential model | Polarimetric coherence, HHVV-coherence | Stand-wise > 2 ha | 33–51/- |
[60] | ALOS PALSAR L-band | AGB (t·ha−1) | Machine learning approach—MaxEnt | ALOS PALSAR mosaic, backscatter in γ°HH and γ°HV, Landsat bands, and categorical data | 50 m | 36.4/- |
- use SAR L-band backscatter and coherence data synergistically to improve AGB estimation at a local scale;
- compare AGB retrieval results using two recently popular machine learning algorithms.
2. Test Site and Available Data
2.1. Study Site
2.2. Available Data
Image Name | Acquisition Date | Acquisition Mode | Weather Conditions: Mean Temperature (°C)/Wind Speed (m/s)/Precipitation (mm)/Snow Depth (mm) |
---|---|---|---|
ALPSRP049391140 | 28 December 2006 | FBS | dry frozen conditions, −17.8/0.5/0/238.8 |
ALPSRP056101140 | 12 February 2007 | FBS | dry frozen conditions, −18.9/1.7/0/340.4 |
ALPSRP082941140 | 15 August 2007 | FBD | wet unfrozen conditions, 13.6/1.2/0/0 (2 days before heavy rain) |
ALPSRP089651140 | 30 September 2007 | FBD | wet unfrozen conditions, 13.1/3.9/-/0 (3 days before heavy rain) |
ALPSRP103071140 | 31 December 2007 | FBS | dry frozen conditions, −5.9/4.4/0/279.4 |
ALPSRP109781140 | 15 February 2008 | FBD | dry frozen conditions, −17.2/0.4/0/381 |
ALPSRP129911140 | 2 July 2008 | FBD | wet unfrozen conditions, 19.7/1.7/0.3/0 |
ALPSRP136621140 | 17 August 2008 | FBD | wet unfrozen conditions, 16.8/1.6/0.8/0 |
ALPSRP156751140 | 2 January 2009 | FBS | dry frozen conditions, −12.7/1.1/0/299.7 |
ALPSRP163461140 | 17 February 2009 | FBS | dry frozen conditions, -31.3/0.6/0/459.7 |
ALPSRP190301140 | 20 August 2009 | FBD | wet unfrozen conditions,14.7/0.8/1/0 (6 days before heavy rain) |
ALPSRP197011140 | 5 October 2009 | FBD | dry unfrozen conditions,11.5/1.6/0/0 |
ALPSRP210431140 | 5 January 2010 | FBS | dry frozen conditions, −33.7/1.5/0/589.3 |
ALPSRP217141140 | 20 February 2010 | FBS | dry frozen conditions, −22.9/1.2/0/599.4 |
ALPSRP243981140 | 23 August 2010 | FBD | dry unfrozen conditions, 22.6/2.3/0/0 |
ALPSRP250691140 | 8 October 2010 | FBD | wet unfrozen conditions, 1.4/1.7/0.5/10.2 |
ALPSRP257401140 | 23 November 2010 | FBD | dry frozen conditions, −12.9/1.7/0/119.4 |
ALPSRP264111140 | 8 January 2011 | FBS | dry frozen conditions, −23.3/1.5/0/360.7 |
ALPSRP270821140 | 23 February 2011 | FBS | dry frozen conditions, −27.6/0.5/0/429.3 |
3. Processing Methods
3.1. Forest Inventory Data
3.2. SAR Data Processing and Data Selection
PALSAR Data | Perpendicular Baseline |Bn| (m) | Temporal Baseline Bt (days) |
---|---|---|
5 January 2010 & 20 February 2010 | 789 | 46 |
23 August 2010 & 8 October 2010 | 461 | 46 |
8 October 2010 & 23 November 2010 | 224 | 46 |
28 December 2006 & 5 January 2010 | 2390 | 1104 |
12 February 2007 & 5 January 2010 | 1111 | 1058 |
12 February 2007 & 20 February 2010 | 1899 | 1104 |
31 December 2007 & 5 January 2010 | 1086 | 736 |
31 December 2007 & 20 February 2010 | 297 | 782 |
15 February 2008 & 5 January 2010 | 2190 | 690 |
15 February 2008 & 20 February 2010 | 1401 | 736 |
2 January 2009 & 5 January 2010 | 3041 | 368 |
2 January 2009 & 20 February 2010 | 3829 | 414 |
17 February 2009 & 5 January 2010 | 2339 | 322 |
17 February 2009 & 20 February 2010 | 3126 | 368 |
5 January 2010 & 8 January 2011 | 2978 | 368 |
20 February 2010 & 8 January 2011 | 2190 | 322 |
5 January 2010 & 23 February 2011 | 3780 | 414 |
20 February 2010 & 23 February 2011 | 2992 | 368 |
8 January 2011 & 23 February 2011 | 803 | 46 |
3.3. AGB Retrieval Models
4. Retrieval Results
4.1. MaxEnt Performance
4.2. Random Forests Performance
4.3. AGB Mapping Results
Method | MaxEnt Unfiltered Dataset | Random Forests Unfiltered Dataset | Maxent Filtered Dataset | Random Forests Filtered Dataset |
---|---|---|---|---|
Range t·ha−1 | 0–140 | 0–160 | 0–150 | 0–170 |
Mean AGB t ha−1 | 87 | 95 | 89 | 97 |
4.4. Validation
Model | Dataset | RMSEcor (t·ha−1) | rRMSEcor (%) | Bias (t·ha−1) |
---|---|---|---|---|
MaxEnt | Unfiltered | 33.3/36.4 | 34.3/39.5 | 12.0/5.2 |
Filtered | 28.7/35.8 | 29.6/38.8 | 6.9/4.3 | |
Random Forests | Unfiltered | 21.6/35.4 | 22.3/38.4 | 3.2/−4.4 |
Filtered | 21.3/35.0 | 22.0/36.9 | 0.9/−4.5 |
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources. Assesment 2010. Main report; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO. State of the World ’s Forests; FAO: Rome, Italy, 2012. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Shvidenko, A.; Jonas, M.; McCallum, I.; Thomson, A.; Balzter, H. Uncertainties of a regional terrestrial biota full carbon account: A systems analysis. Water Air Soil Pollut. Focus 2007, 7, 425–441. [Google Scholar] [CrossRef]
- Shvidenko, A.Z.; Schepaschenko, D.G.; Vaganov, E.A.; Sukhinin, A.I.; Maksyutov, S.S.; McCallum, I.; Lakyda, I.P. Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Dokl. Earth Sci. 2011, 441, 1678–1682. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Rosenqvist, Å.; Milne, A.; Lucas, R.; Imhoff, M.; Dobson, C. A review of remote sensing technology in support of the Kyoto Protocol. Environ. Sci. Policy 2003, 6, 441–455. [Google Scholar] [CrossRef]
- Patenaude, G.; Milne, R.; Dawson, T.P. Synthesis of remote sensing approaches for forest carbon estimation: Reporting to the Kyoto Protocol. Environ. Sci. Policy 2005, 8, 161–178. [Google Scholar] [CrossRef]
- McCallum, I.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Satellite-based terrestrial production efficiency modeling. Carbon Balance Manag. 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Goetz, S.; Baccini, A.; Laporte, N.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag. 2009, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Thiel, C.; Santoro, M.; Cartus, O.; Thiel, C.; Riedel, T.; Schmullius, C. Perspectives of SAR based forest cover, forest cover change and biomass mapping. In The Kyoto Protocol: Economic Assessments, Implementation Mechanisms, and Policy implications; Vasser, C.P., Ed.; Nova Science Publishers, Inc.: New York, 2009; pp. 13–56. [Google Scholar]
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- GOFC-GOLD. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. GOFC-GOLD Report Versio; GOFC-GOLD: Wageningen, The Netherlands, 2014. [Google Scholar]
- Sader, S.A.; Waide, R.B.; Lawrence, W.T.; Joyce, A.T. Tropical Forest Biomass and Successional Age Class Relationships to a Vegetation Index Derived from Landsat TM Data. Remote Sens. Environ. 1989, 28, 143–156. [Google Scholar] [CrossRef]
- Wasseige, C.; de Defourny, P. Retrieval of tropical forest structure characteristics from bi-directional reflectance of SPOT images. Remote Sens. Environ. 2002, 83, 362–375. [Google Scholar] [CrossRef]
- Dong, J.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef]
- Joshi, C.; Leeuw, J.; de Skidmore, A.K.; Duren, I.C.; van Oosten, H. Remotely sensed estimation of forest canopy density: A comparison of the performance of four methods. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 84–95. [Google Scholar] [CrossRef]
- Avitabile, V.; Herold, M.; Henry, M.; Schmullius, C. Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda. Carbon Balance Manag. 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 2007, 35, 313–347. [Google Scholar] [CrossRef]
- Ji, L.; Wylie, B.K.; Nossov, D.R.; Peterson, B.; Waldrop, M.P.; McFarland, J.W.; Rover, J.; Hollingsworth, T.N. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 451–461. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Del Bom Espirito-Santo, F.; Hunter, M.O.; de Oliveira, R. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005, 32, 22–25. [Google Scholar] [CrossRef]
- Nelson, R.; Ranson, K.J.; Sun, G.; Kimes, D.S.; Kharuk, V.; Montesano, P. Estimating Siberian timber volume using MODIS and ICESat/GLAS. Remote Sens. Environ. 2009, 113, 691–701. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens. Environ. 2010, 114, 138–154. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Khalefa, E.; Smit, I.P.J.; Nickless, A.; Archibald, S.; Comber, A.; Balzter, H. Retrieval of savanna vegetation canopy height from ICESat-GLAS spaceborne LiDAR with terrain correction. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1439–1443. [Google Scholar] [CrossRef]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Kurvonen, L.; Pulliainen, J.; Hallikainen, M. Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images. IEEE Trans. Geosci. Remote Sens. 1999, 37, 198–205. [Google Scholar] [CrossRef]
- Rignot, E.; Way, J.; Williams, C.; Viereck, L. Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1117–1124. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Davidson, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef]
- Natale, A.; Guida, R.; Bird, R.; Whittaker, P.; Cohen, M.; Hall, D. Demonstration and analysis of the applications of S-band SAR. In Proceedings of the APSAR (The Asia-Pacific Conference on Synthetic Aperture Radar), Seoul, Korea, 26–30 September 2011.
- Beaudoin, A.; Le Toan, T.; Goze, S.; Nezry, E.; Lopes, A.; Mougin, E.; Hsu, C.C.; Han, H.C.; Kong, J.A.; Shin, R.T. Retrieval of forest biomass from SAR data. Int. J. Remote Sens. 1994, 15, 2777–2796. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Pierce, L.E.; Sharik, T.L.; Bergen, K.M.; Kellndorfer, J.; Kendra, J.R.; Li, E.; Lin, Y.C.; Nashashibi, A.; et al. Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR. IEEE Trans. Geosci. Remote Sens. 1995, 33, 877–895. [Google Scholar] [CrossRef]
- Ranson, K.J.; Sun, G. Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans. Geosci. Remote Sens. 1994, 32, 388–396. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Heiska, K.; Hyyppa, J.; Hallikainen, M.T. Backscattering properties of boreal forests at the C- and X-bands. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1041–1050. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Israelsson, H. Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data. Int. J. Remote Sens. 1999, 20, 123–137. [Google Scholar] [CrossRef]
- Solberg, S.; Astrup, R.; Gobakken, T.; Næsset, E.; Weydahl, D.J. Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sens. Environ. 2010, 114, 2353–2360. [Google Scholar] [CrossRef]
- Askne, J.; Fransson, J.; Santoro, M.; Soja, M.; Ulander, L. Model-based biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisitions. Remote Sens. 2013, 5, 5574–5597. [Google Scholar] [CrossRef]
- Koskinen, J.T.; Pulliainen, J.T.; Hyyppä, J.M.; Engdahl, M.E.; Hallikainen, M.T. The seasonal behavior of interferometric coherence in boreal forest. IEEE Trans. Geosci. Remote Sens. 2001, 39, 820–829. [Google Scholar] [CrossRef]
- Santoro, M.; Askne, J.; Smith, G.; Fransson, J.E.S. Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sens. Environ. 2002, 81, 19–35. [Google Scholar] [CrossRef]
- Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Solberg, S.; McRoberts, R.E. The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data. Remote Sens. Environ. 2015, 168, 252–264. [Google Scholar] [CrossRef]
- Papathanassiou, K.P.; Cloude, S.R. Single-baseline polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2352–2363. [Google Scholar] [CrossRef]
- Neumann, M.; Saatchi, S.S.; Ulander, L.M.H.; Fransson, J.E.S. Assessing performance of L- and P-Band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass. IEEE Trans. Geosci. Remote Sens. 2012, 50, 714–726. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F. Multibaseline polarimetric SAR tomography of a boreal forest at P- and L-bands. IEEE Trans. Geosci. Remote Sens. 2012, 50, 232–246. [Google Scholar] [CrossRef]
- Persson, H.; Fransson, J. Forest variable estimation using radargrammetric processing of TerraSAR-X images in boreal forests. Remote Sens. 2014, 6, 2084–2107. [Google Scholar] [CrossRef]
- Vastaranta, M.; Niemi, M.; Karjalainen, M.; Peuhkurinen, J.; Kankare, V.; Hyyppä, J.; Holopainen, M. Prediction of forest stand attributes using TerraSAR-X stereo imagery. Remote Sens. 2014, 6, 3227–3246. [Google Scholar] [CrossRef]
- Askne, J.; Santoro, M.; Smith, G.; Fransson, J.E. S. Multitemporal repeat-rass SAR interferometry of boreal forests. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1540–1550. [Google Scholar] [CrossRef]
- Santoro, M.; Shvidenko, A.; Mccallum, I.; Askne, J.; Schmullius, C. Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval. Remote Sens. Environ. 2007, 106, 154–172. [Google Scholar] [CrossRef]
- Peregon, A.; Yamagata, Y. The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia. Remote Sens. Environ. 2013, 137, 139–146. [Google Scholar] [CrossRef]
- Chowdhury, T.A.; Thiel, C.; Schmullius, C. Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest. Remote Sens. Environ. 2014, 155, 129–144. [Google Scholar] [CrossRef]
- Balzter, H.; Talmon, E.; Wagner, W.; Gaveau, D.; Plummer, S.; Yu, J.J.; Quegan, S.; Davidson, M.; Le Toan, T.; Gluck, M.; Shvidenko, A.; Nilsson, S.; Tansey, K.; Luckman, A.; Schmullius, C. Accuracy assessment of a large-scale forest cover map of central Siberia from synthetic aperture radar. Can. J. Remote Sens. 2002, 28, 719–737. [Google Scholar] [CrossRef]
- Wagner, W.; Luckman, A.; Vietmeier, J.; Tansey, K.; Balzter, H.; Schmullius, C.; Davidson, M.; Gaveau, D.; Gluck, M.; Le, T.; et al. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data. Remote Sens. 2003, 85, 125–144. [Google Scholar] [CrossRef]
- Santoro, M.; Eriksson, L.; Askne, J.; Schmullius, C. Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter. Int. J. Remote Sens. 2006, 27, 3425–3454. [Google Scholar] [CrossRef]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; Mccallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ. 2011, 115, 490–507. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Fransson, J.; Shvidenko, A.; McCallum, I.; Hall, R.; Beaudoin, A.; Beer, C.; Schmullius, C. Estimates of Forest Growing Stock Volume for Sweden, Central Siberia, and Québec Using Envisat Advanced Synthetic Aperture Radar Backscatter Data. Remote Sens. 2013, 5, 4503–4532. [Google Scholar] [CrossRef]
- Wilhelm, S.; Hüttich, C.; Korets, M.; Schmullius, C. Large area mapping of boreal Growing Stock Volume on an annual and multi-temporal level using PALSAR L-band backscatter mosaics. Forests 2014, 5, 1999–2015. [Google Scholar] [CrossRef]
- Hüttich, C.; Korets, M.; Bartalev, S.; Zharko, V.; Schepaschenko, D.; Shvidenko, A.; Schmullius, C. Exploiting Growing Stock Volume Maps for Large Scale Forest Resource Assessment: Cross-Comparisons of ASAR- and PALSAR-Based GSV Estimates with Forest Inventory in Central Siberia. Forests 2014, 5, 1753–1776. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Veiga, P.; Stelmaszczuk-Górska, M.; Hüttich, C.; Schmullius, C.; Tansey, K.; Balzter, H. Aboveground Biomass Mapping in Krasnoyarsk Kray (Central Siberia) using Allometry, Landsat, and ALOS PALSAR. In Proceedings of the RSPSoc Annual Conference; Remote Sensing and Photogrammetry Society, Aberystwyth, Wales, 2–5 September 2014.
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Hüttich, C.; Herold, M.; Strohbach, B.J.; Dech, S. Integrating in-situ, Landsat, and MODIS data for mapping in Southern African savannas: Experiences of LCCS-based land-cover mapping in the Kalahari in Namibia. Environ. Monit. Assess. 2011, 176, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Walker, W.S.; Kellndorfer, J.M.; Lapoint, E.; Hoppus, M.; Westfall, J. An empirical InSAR-optical fusion approach to mapping vegetation canopy height. Remote Sens. Environ. 2007, 109, 482–466. [Google Scholar] [CrossRef]
- Houghton, R.A.; Butman, D.; Bunn, A.G.; Krankina, O.N.; Schlesinger, P.; Stone, T.A. Mapping Russian forest biomass with data from satellites and forest inventories. Environ. Res. Lett. 2007, 2. [Google Scholar] [CrossRef]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366–380. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Rombach, M.; Walker, W. Mapping Canopy Height and Growing Stock Volume Using Airborne Lidar, ALOS PALSAR and Landsat ETM+. Remote Sens. 2012, 4, 3320–3345. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef]
- Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett. 2008, 3. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- JAXA Earth Observation Research Center (EORC) ALOS Kyoto & Carbon Initiative. Available online: http://www.eorc.jaxa.jp/ALOS/en/kyoto/kyoto_index.htm (accessed on 13 April 2015).
- Schmullius, P.C.; (Friedrich-Schiller-University Jena, Germany); Thiel, C.; (Friedrich-Schiller-University Jena, Germany). Proposal to JAXA for K & C Phase 3 PALSAR Intensities and Coherence for Forest Cover and Forest Cover Change Mapping and Biomass Retrieval; Unpublished; 2011. [Google Scholar]
- Friedrich-Schiller-University Siberian Earth System Science Cluster. Available online: http://www.sibessc.uni-jena.de/ (accessed on 20 June 2012).
- Schmullius, C.; Baker, J.; Balzter, H.; Davidson, M.; Eriksson, L.; Gaveau, D.; Gluck, M.; Holz, A.; Le Toan, T.; Luckman, A.; et al. SAR Imaging for Boreal Ecology and Radar Interferometry Applications SIBERIA project (Contract No. ENV4-CT97-0743-SIBERIA) – Final Report; Friedrich-Schiller-University: Jena, Germany, 2001. Available online: http://www.siberia1.uni-jena.de/pdf_files/final_report.pdf (accessed on 11 January 2012).
- Shvidenko, A.; Schepaschenko, D.; Nilsson, S.; Bouloui, Y. Semi-empirical models for assessing biological productivity of Northern Eurasian forests. Ecol. Modell. 2007, 204, 163–179. [Google Scholar] [CrossRef]
- Shvidenko, A.; Schepaschenko, D.; Nilsson, S.; Boului, Y. Tables and Models of Growth and Productivity of Forests of Major Forming Species of Northern Eurasia (standard and reference materials); Federal Agency of Forest Management: Moscow, Russia, 2008. [Google Scholar]
- Van Laar, A.; Akca, A. Forest Mensuration; von Gadow, K., Pukkala, T., Tome, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 13. [Google Scholar]
- IIASA Russian Forests & Forestry. Live Biomass & Net Primary Production—Measurements of Forest Phytomass in situ. Available online: http://webarchive.iiasa.ac.at/Research/FOR/forest_cdrom/english/for_prod_en.html (accessed on 20 May 2013).
- Ulander, L.M.H. Radiometrie slope correction of synthetic-aperture radar images. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1115–1122. [Google Scholar] [CrossRef]
- Rignot, E.J.; Zimmermann, R.; Zyl, J.J. Van Spaceborne applications of P-band imaging radars for measuring forest biomass. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1162–1169. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Mikkela, P.J.; Hallikainen, M.T.; Ikonen, J. Seasonal dynamics of C-band backscatter of boreal forests with applications to biomass and soil moisture estimation. IEEE Trans. Geosci. Remote Sens. 1996, 34, 758–770. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4, International Centre for Tropical Agriculture (CIAT). Available online: http://srtm.csi.cgiar.org (accessed on 4 February 2013).
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Wegmüller, U.; Werner, C.; Strozzi, T. SAR Interferometric and Differential Interferometric Processing Chain. In Proceedings of the IGARSS’98; IEEE Publications: Seattle, WA, USA, 1998; pp. 1106–1108. [Google Scholar] [CrossRef]
- Breiman, L.; Cutler, A. Breiman and Cutler’s random forests for classification and regression. Available online: https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (accessed on 18 February 2014).
- Federal Forestry Agency. Manual on Forest Inventory and Planning in Russian Forest; Federal Forestry Agency: Moscow, Russia, 1995. [Google Scholar]
- Shvidenko, A.Z.; Gustafson, E.; Mcguire, A.D.; Kharuk, V.I.; Schepaschenko, D.G.; Shugart, H.H.; Tchebakova, N.M.; Vygodskaya, N.N.; Onuchin, A.A.; Hayes, D.J.; et al. Terrestrial ecosystems and their change. In Regional Environmental Changes in Siberia and Their Global Consequences; Groisman, P.Y., Gutman, G., Eds.; Springer Environmental Science and Engineering: Dordrecht, The Netherlands, 2013; pp. 171–249. [Google Scholar]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stelmaszczuk-Górska, M.A.; Rodriguez-Veiga, P.; Ackermann, N.; Thiel, C.; Balzter, H.; Schmullius, C. Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity. J. Imaging 2016, 2, 1. https://doi.org/10.3390/jimaging2010001
Stelmaszczuk-Górska MA, Rodriguez-Veiga P, Ackermann N, Thiel C, Balzter H, Schmullius C. Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity. Journal of Imaging. 2016; 2(1):1. https://doi.org/10.3390/jimaging2010001
Chicago/Turabian StyleStelmaszczuk-Górska, Martyna A., Pedro Rodriguez-Veiga, Nicolas Ackermann, Christian Thiel, Heiko Balzter, and Christiane Schmullius. 2016. "Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity" Journal of Imaging 2, no. 1: 1. https://doi.org/10.3390/jimaging2010001
APA StyleStelmaszczuk-Górska, M. A., Rodriguez-Veiga, P., Ackermann, N., Thiel, C., Balzter, H., & Schmullius, C. (2016). Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity. Journal of Imaging, 2(1), 1. https://doi.org/10.3390/jimaging2010001