Clinical-Evolutionary Staging System of Primary Open-Angle Glaucoma Using Optical Coherence Tomography
<p>Correlation matrix map among the thickness of the BMO-MRW rims and RNFL sectors. Every cell represents the Pearson correlation coefficient r of the variables at the corresponding row and column. Dark blue represents a strong positive correlation, and light blue represents a weak positive correlation.</p> "> Figure 2
<p>Percentage of the total variability explained by the main principal components.</p> "> Figure 3
<p>Map of healthy and glaucoma eyes on the first two principal components. The horizontal dimension (x-axis) corresponds to the first principal component, and the vertical dimension (y-axis) corresponds to the second principal component.</p> "> Figure 4
<p>Contribution of variables to the main principal components.</p> "> Figure 5
<p>Reduction in the intra-group variability with an increasing number of clusters. According to the elbow criteria, the optimal number of clusters is 3 or 4.</p> "> Figure 6
<p>Clusters defined by the k-means method using all the BMO-MRW and RNFL sectors variables represented on the <span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis corresponding to the first and second principal components, respectively.</p> "> Figure 7
<p>Distribution of the first principal component of the BMO-MRW and RNFL sectors variables by glaucoma stages and healthy eyes.</p> "> Figure 8
<p>Distribution of the first principal component of the BMO-MRW and RNFL sector variables by glaucoma stages and healthy eyes.</p> "> Figure 9
<p>Classification of one eye using the glaucoma-staging app.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ophthalmological Assessment
2.3. Spectral Domain Optical Coherence Tomography
- is the value of individual i in variable x.
- is the mean of variable x.
- is the standard deviation of variable x.
- is the age of individual i.
- is the mean age of healthy individuals at baseline.
- is the slope of the regression line of variable x on age.
- is the area of the BMO-MRW of individual i.
- is the mean area of the BMO-MRW of healthy individuals at baseline.
- is the slope of the regression line of variable x over the area of the BMO-MRW.
- is the standardized value of individual i in variable x.
2.4. Statistical Analysis
3. Results
3.1. The Sample and Variables
3.2. Correlation Analysis
3.3. Principal Component Analysis
3.4. Cluster Analysis
3.5. Linear Discriminant Analysis
3.6. Simplifying the Model
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- No authors listed. European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Chapter 2: Classification and terminologySupported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 2 Classification and Terminology. Br. J. Ophthalmol. 2017, 101, 73–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thylefors, B.; Negrel, A.D. The global impact of glaucoma. Bull. World Health Organ. 1994, 72, 323–326. [Google Scholar] [PubMed]
- Quigley, H.A.; Addicks, E.M.; Green, W.R. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch. Ophthalmol. 1982, 100, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.; Lin, C.; Schuman, J.; Stinson, W.; Chang, W.; Hee, M.; Flotte, T.; Gregory, K.; Puliafito, C.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuman, J.S.; Hee, M.R.; Puliafito, C.A.; Wong, C.; Pedut-Kloizman, T.; Lin, C.P.; Hertzmark, E.; Izatt, J.A.; Swanson, E.A.; Fujimoto, J.G. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch. Ophthalmol. 1995, 113, 586–596. [Google Scholar] [CrossRef]
- Bengtsson, B.; Andersson, S.; Heijl, A. Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening. Acta Ophthalmol. 2012, 90, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Grewal, D.S.; Tanna, A.P. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr. Opin. Ophthalmol. 2013, 24, 150–161. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.H.; Kim, T.W.; Park, K.H.; Kim, D.M. Reproducibility of retinal nerve fiber thickness measurements using the test-retest function of spectral OCT/SLO in normal and glaucomatous eyes. J. Glaucoma 2010, 19, 637–642. [Google Scholar] [CrossRef]
- Toteberg-Harms, M.; Sturm, V.; Knecht, P.B.; Funk, J.; Menke, M.N. Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 279–287. [Google Scholar] [CrossRef]
- Huang, L.; Fan, N.; Shen, X.; He, J. Comparison of the diagnostic ability of retinal nerve fiber layer thickness measured using time domain and spectral domain optical coherence tomography in primary open angle glaucoma. Eye Sci. 2011, 26, 132–137. [Google Scholar]
- Chauhan, B.C.; Burgoyne, C.F. From clinical examination of the optic disc to clinical assessment of the optic nerve head: A paradigm change. Am. J. Ophthalmol. 2013, 156, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dastiridou, A.; Francis, B.A.; Tan, O.; Varma, R.; Greenfield, D.S.; Schuman, J.S.; Huang, D. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field. Am. J. Ophthalmol. 2017, 184, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Alberca, A. Bringing R to non-expert users with the package RKTeaching. Boletin de Estadistica e Investigacion Operativa (BEIO) 2015, 31, 170–188. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kassambara, A. Practical Guide to Cluster Analysis in R. STHDA: 2017. Available online: https://www.datanovia.com/en/wp-content/uploads/dn-tutorials/book-preview/clustering_en_preview.pdf (accessed on 19 May 2020).
- Germano, R.A.S.; de Moraes, C.G.; Susanna, R.; Dantas, D.O.; Neto, E.D.S. Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity. J. Glaucoma 2017, 26, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, K.; Shoji, N.; Morita, T.; Shimizu, K. A modified glaucoma staging system based on visual field index. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 2747–2752. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Sample, P.A.; Pascual, J.P.; Zangwill, L.M.; Girkin, C.A.; Liebmann, J.M.; Weinreb, R.N.; Racette, L. Comparison of visual field severity classification systems for glaucoma. J. Glaucoma 2012, 21, 551–561. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, T.; Gamalapati, J.; Sivaswamy, J.; Balakrishna, N. Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes. Saudi J. Ophthalmol. 2018, 32, 295–302. [Google Scholar] [CrossRef]
- Miguel, A.I.M.; Silva, A.B.; Azevedo, L.F. Diagnostic performance of optical coherence tomography angiography in glaucoma: A systematic review and meta-analysis. Br. J. Ophthalmol. 2019, 103, 1677–1684. [Google Scholar] [CrossRef]
- Rabiolo, A.; Gelormini, F.; Sacconi, R.; Cicinelli, M.V.; Triolo, G.; Bettin, P.; Nouri-Mahdavi, K.; Bandello, F.; Querques, G. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS ONE 2018, 13, e0205773. [Google Scholar] [CrossRef]
- Hollo, G. Optical Coherence Tomography Angiography in Glaucoma. Turk J. Ophthalmol. 2018, 48, 196–201. [Google Scholar] [CrossRef]
- Saba, T.; Bokhari, S.T.F.; Sharif, M.; Yasmin, M.; Raza, M. Fundus image classification methods for the detection of glaucoma: A review. Microsc. Res. Tech. 2018, 81, 1105–1121. [Google Scholar] [CrossRef]
- Chauhan, B.C.; O’Leary, N.; AlMobarak, F.A.; Reis, A.S.C.; Yang, H.; Sharpe, G.P.; Hutchison, D.M.; Nicolela, M.T.; Burgoyne, C.F. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 2013, 120, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Danthurebandara, V.M.; Vianna, J.R.; Sharpe, G.P.; Hutchison, D.M.; Belliveau, A.C.; Shuba, L.M.; Nicolela, M.T.; Chauhan, B.C. Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness. Investig. Ophthalmol. Vis. Sci. 2016, 57, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.C.; Tsikata, E.; Khoueir, Z.; Simavli, H.; Guo, R.; de Luna, R.A.; Pandit, S.; Que, C.J.; de Boer, J.F.; Chen, T.C. Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography. J. Glaucoma 2017, 26, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Yu, M.; Leung, C.K. Diagnostic criteria for detection of retinal nerve fibre layer thickness and neuroretinal rim width abnormalities in glaucoma. Br. J. Ophthalmol. 2019, 104, 270–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.; Johnson, T.V.; Garg, A.; Boland, M.V. Artificial intelligence in glaucoma. Curr. Opin. Ophthalmol. 2019, 30, 97–103. [Google Scholar] [CrossRef]
- Gardiner, S.; Boey, P.; Yang, H.; Fortune, B.; Burgoyne, C.; Demirel, S. Structural Measurements for Monitoring Change in Glaucoma: Comparing Retinal Nerve Fiber Layer Thickness With Minimum Rim Width and Area. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6886–6891. [Google Scholar] [CrossRef]
- Chauhan, B.; Danthurebandara, V.; Sharpe, G.; Demirel, S.; Girkin, C.; Mardin, C.; Scheuerle, A.; Burgoyne, C. Bruch’s Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study. Ophthalmology 2015, 122. [Google Scholar] [CrossRef] [Green Version]
- Enders, P.; Adler, W.; Schaub, F.; Hermann, M.; Dietlein, T.; Cursiefen, C.; Heindl, L. Novel Bruch’s Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma. Investig. Opthalmol. Vis. Sci. 2016, 57, 6596. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.; Belliveau, A.; Sharpe, G.; Shuba, L.; Chauhan, B.; Nicolela, M. Diagnostic Accuracy of Optical Coherence Tomography and Scanning Laser Tomography for Identifying Glaucoma in Myopic Eyes. Ophthalmology 2016, 123. [Google Scholar] [CrossRef]
- Bambo, M.; Fuentemilla, E.; Cameo, B.; Fuertes Lazaro, I.; Ferrandez, B.; Güerri, N.; Polo, V.; Larrosa, J.; Pablo, L.; Garcia-Martin, E. Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol. BMC Ophthalmol. 2020, 20, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusini, P. OCT Glaucoma Staging System: A new method for retinal nerve fiber layer damage classification using spectral-domain OCT. Eye (Lond) 2018, 32, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Glaucoma | Mean | Std.Dev |
---|---|---|---|
Age | N | 47.52 | 18.69 |
Age | Y | 66.82 | 13.92 |
BMO.Area | N | 1.98 | 0.40 |
BMO.Area | Y | 1.99 | 0.43 |
BMO.G | N | 350.02 | 61.44 |
BMO.G | Y | 220.99 | 71.86 |
BMO.NS | N | 402.48 | 82.48 |
BMO.NS | Y | 242.72 | 86.30 |
BMO.N | N | 381.96 | 72.74 |
BMO.N | Y | 245.68 | 87.21 |
BMO.NI | N | 421.77 | 74.73 |
BMO.NI | Y | 272.73 | 97.87 |
BMO.TI | N | 368.08 | 66.23 |
BMO.TI | Y | 223.87 | 93.75 |
BMO.T | N | 251.81 | 54.99 |
BMO.T | Y | 167.87 | 54.27 |
BMO.TS | N | 340.88 | 72.08 |
BMO.TS | Y | 196.27 | 82.17 |
RNFL3.5.G | N | 102.68 | 9.40 |
RNFL3.5.G | Y | 78.33 | 19.22 |
RNFL3.5.NS | N | 122.58 | 23.45 |
RNFL3.5.NS | Y | 90.57 | 29.08 |
RNFL3.5.N | N | 87.20 | 13.15 |
RNFL3.5.N | Y | 68.08 | 19.45 |
RNFL3.5.NI | N | 120.23 | 22.68 |
RNFL3.5.NI | Y | 88.04 | 28.32 |
RNFL3.5.TI | N | 154.01 | 19.29 |
RNFL3.5.TI | Y | 109.00 | 38.58 |
RNFL3.5.T | N | 70.65 | 10.49 |
RNFL3.5.T | Y | 60.64 | 15.92 |
RNFL3.5.TS | N | 129.45 | 21.00 |
RNFL3.5.TS | Y | 93.89 | 31.43 |
RNFL4.1.G | N | 87.95 | 8.41 |
RNFL4.1.G | Y | 68.73 | 16.05 |
RNFL4.1.NS | N | 99.04 | 20.86 |
RNFL4.1.NS | Y | 75.30 | 24.70 |
RNFL4.1.N | N | 72.08 | 11.39 |
RNFL4.1.N | Y | 57.32 | 15.94 |
RNFL4.1.NI | N | 95.64 | 19.05 |
RNFL4.1.NI | Y | 72.32 | 21.83 |
RNFL4.1.TI | N | 138.28 | 16.79 |
RNFL4.1.TI | Y | 99.90 | 33.05 |
RNFL4.1.T | N | 63.31 | 9.25 |
RNFL4.1.T | Y | 56.21 | 14.40 |
RNFL4.1.TS | N | 118.76 | 18.38 |
RNFL4.1.TS | Y | 86.98 | 28.21 |
RNFL4.7.G | N | 77.02 | 6.90 |
RNFL4.7.G | Y | 61.43 | 14.25 |
RNFL4.7.NS | N | 82.13 | 17.81 |
RNFL4.7.NS | Y | 63.45 | 20.93 |
RNFL4.7.N | N | 61.52 | 9.52 |
RNFL4.7.N | Y | 50.38 | 14.07 |
RNFL4.7.NI | N | 77.57 | 15.04 |
RNFL4.7.NI | Y | 59.69 | 18.47 |
RNFL4.7.TI | N | 124.82 | 15.11 |
RNFL4.7.TI | Y | 91.84 | 31.15 |
RNFL4.7.T | N | 58.02 | 8.40 |
RNFL4.7.T | Y | 52.54 | 14.26 |
RNFL4.7.TS | N | 109.47 | 15.52 |
RNFL4.7.TS | Y | 81.43 | 25.25 |
(a) Classification without healthy eyes | |||||
Predicted\Actual | I | II | III | IV | |
Stage I | 47 | 2 | 0 | 0 | |
Stage II | 4 | 76 | 3 | 0 | |
Stage III | 0 | 0 | 50 | 4 | |
Stage IV | 0 | 0 | 3 | 37 | |
(b) Classification with healthy eyes | |||||
Predicted\Actual | Healthy | I | II | III | IV |
Healthy | 747 | 42 | 36 | 0 | 0 |
Stage I | 9 | 9 | 2 | 1 | 0 |
Stage II | 8 | 0 | 36 | 8 | 0 |
Stage III | 1 | 0 | 4 | 45 | 10 |
Stage IV | 0 | 0 | 0 | 2 | 31 |
Sensitivity | Specificity | Balanced Accuracy | |
---|---|---|---|
(a) Classification without healthy eyes. | |||
Stage I | 0.92 | 0.99 | 0.96 |
Stage II | 0.97 | 0.95 | 0.96 |
Stage III | 0.89 | 0.98 | 0.93 |
Stage IV | 0.90 | 0.98 | 0.94 |
(b) Classification with healthy eyes. | |||
Stage Healthy | 0.98 | 0.65 | 0.82 |
Stage I | 0.18 | 0.99 | 0.58 |
Stage II | 0.46 | 0.98 | 0.72 |
Stage III | 0.80 | 0.98 | 0.89 |
Stage IV | 0.76 | 1.00 | 0.88 |
Variables Used in the Model | Overall Accuracy without Healthy Eyes | Overall Accuracy with Healthy Eyes |
---|---|---|
All the variables | 0.93 | 0.88 |
Rims G and TI of BMO and all the RNFL sectors | 0.94 | 0.89 |
Rims G of BMO and all the RNFL sectors | 0.88 | 0.88 |
Rims TI of BMO and all the RNFL sectors | 0.71 | 0.84 |
Rims G and TI of BMO and 3.5 RNFL sector | 0.92 | 0.88 |
Rims G and TI of BMO | 0.59 | 0.84 |
Sectors G and TI of 3.5 RNFL | 0.89 | 0.86 |
Rim G of BMO and 3.5 RNFL sector | 0.89 | 0.88 |
Rim TI of BMO and 3.5 RNFL sector | 0.70 | 0.84 |
Rim G of BMO | 0.57 | 0.83 |
Sector G of 3.5 RNFL | 0.87 | 0.86 |
Rim TI of BMO | 0.60 | 0.82 |
Sector TI of 3.5 RNFL | 0.64 | 0.82 |
(a) Classification without healthy eyes | |||||
Predicted\Actual | I | II | III | IV | |
Stage I | 45 | 0 | 0 | 0 | |
Stage II | 6 | 75 | 4 | 0 | |
Stage III | 0 | 3 | 50 | 3 | |
Stage IV | 0 | 0 | 2 | 38 | |
(b) Classification with healthy eyes | |||||
Predicted\Actual | Healthy | I | II | III | IV |
Healthy | 755 | 50 | 38 | 2 | 0 |
Stage I | 2 | 0 | 0 | 0 | 0 |
Stage II | 7 | 1 | 37 | 7 | 0 |
Stage III | 1 | 0 | 3 | 46 | 4 |
Stage IV | 0 | 0 | 0 | 1 | 37 |
Sensitivity | Specificity | Balanced Accuracy | |
---|---|---|---|
(a) Classification without healthy eyes | |||
Stage I | 0.88 | 1.00 | 0.94 |
Stage II | 0.96 | 0.93 | 0.95 |
Stage III | 0.89 | 0.96 | 0.93 |
Stage IV | 0.93 | 0.99 | 0.96 |
(b) Classification with healthy eyes | |||
Stage Healthy | 0.99 | 0.60 | 0.79 |
Stage I | 0.00 | 1.00 | 0.50 |
Stage II | 0.47 | 0.98 | 0.73 |
Stage III | 0.82 | 0.99 | 0.91 |
Stage IV | 0.90 | 1.00 | 0.95 |
(a) Model without healthy eyes | ||||
LD1 | LD2 | LD3 | ||
BMO.G | −0.1881 | 0.7502 | −0.91648 | |
BMO.TI | −0.0943 | −0.2901 | 1.56602 | |
RNFL3.5.G | −0.8857 | 0.4810 | 0.08495 | |
RNFL3.5.TI | −0.4108 | −0.6927 | −0.52166 | |
(b) Model with healthy eyes | ||||
LD1 | LD2 | LD3 | LD4 | |
BMO.G | −0.2069 | 1.2241 | −0.2007 | −1.1987 |
BMO.TI | −0.1555 | −0.4096 | −0.2255 | 1.7378 |
RNFL3.5.G | −0.6034 | −0.1298 | 1.0720 | 0.2322 |
RNFL3.5.TI | −0.2950 | −0.4165 | −0.8337 | −0.6390 |
Sector | Stage | n | Mean | sd | se | lower.ci | upper.ci |
---|---|---|---|---|---|---|---|
BMO.G | Healthy | 765 | 0.34 | 1.04 | 0.04 | 0.27 | 0.41 |
BMO.G | I | 51 | −0.35 | 0.98 | 0.14 | −0.63 | −0.08 |
BMO.G | II | 78 | −1.47 | 0.81 | 0.09 | −1.65 | −1.29 |
BMO.G | III | 56 | −1.98 | 0.88 | 0.12 | −2.21 | −1.74 |
BMO.G | IV | 41 | −3.19 | 0.87 | 0.14 | −3.46 | −2.91 |
BMO.TI | Healthy | 765 | 0.22 | 1.00 | 0.04 | 0.15 | 0.29 |
BMO.TI | I | 51 | −0.27 | 0.95 | 0.13 | −0.54 | −0.00 |
BMO.TI | II | 78 | −1.23 | 0.93 | 0.11 | −1.44 | −1.02 |
BMO.TI | III | 56 | −2.32 | 1.01 | 0.13 | −2.59 | −2.06 |
BMO.TI | IV | 41 | −3.38 | 0.88 | 0.14 | −3.65 | −3.10 |
RNFL3.5.G | Healthy | 765 | 0.32 | 1.04 | 0.04 | 0.24 | 0.39 |
RNFL3.5.G | I | 51 | 0.60 | 0.74 | 0.10 | 0.39 | 0.81 |
RNFL3.5.G | II | 78 | −1.34 | 0.72 | 0.08 | −1.50 | −1.18 |
RNFL3.5.G | III | 56 | −3.13 | 0.77 | 0.10 | −3.34 | −2.92 |
RNFL3.5.G | IV | 41 | −5.49 | 1.13 | 0.18 | −5.85 | −5.14 |
RNFL3.5.TI | Healthy | 765 | 0.08 | 1.11 | 0.04 | −0.00 | 0.15 |
RNFL3.5.TI | I | 51 | 0.05 | 0.84 | 0.12 | −0.18 | 0.29 |
RNFL3.5.TI | II | 78 | −1.02 | 1.04 | 0.12 | −1.25 | −0.78 |
RNFL3.5.TI | III | 56 | −3.65 | 1.26 | 0.17 | −3.99 | −3.32 |
RNFL3.5.TI | IV | 41 | −5.31 | 1.12 | 0.17 | −5.66 | −4.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra-Blesa, A.; Sanchez-Alberca, A.; Garcia-Medina, J.J. Clinical-Evolutionary Staging System of Primary Open-Angle Glaucoma Using Optical Coherence Tomography. J. Clin. Med. 2020, 9, 1530. https://doi.org/10.3390/jcm9051530
Parra-Blesa A, Sanchez-Alberca A, Garcia-Medina JJ. Clinical-Evolutionary Staging System of Primary Open-Angle Glaucoma Using Optical Coherence Tomography. Journal of Clinical Medicine. 2020; 9(5):1530. https://doi.org/10.3390/jcm9051530
Chicago/Turabian StyleParra-Blesa, Alfonso, Alfredo Sanchez-Alberca, and Jose Javier Garcia-Medina. 2020. "Clinical-Evolutionary Staging System of Primary Open-Angle Glaucoma Using Optical Coherence Tomography" Journal of Clinical Medicine 9, no. 5: 1530. https://doi.org/10.3390/jcm9051530
APA StyleParra-Blesa, A., Sanchez-Alberca, A., & Garcia-Medina, J. J. (2020). Clinical-Evolutionary Staging System of Primary Open-Angle Glaucoma Using Optical Coherence Tomography. Journal of Clinical Medicine, 9(5), 1530. https://doi.org/10.3390/jcm9051530