Influence of Sample Size on Automatic Positional Accuracy Assessment Methods for Urban Areas
<p>Classification according to the matching case. 1:1 correspondences (highlighted in black), 1:n correspondences (highlighted in red), n:m correspondences (highlighted in green), and unpaired polygons (highlighted in blue).</p> "> Figure 2
<p>(<b>a</b>) The single buffer overlay method (SBOM), (<b>b</b>) its adaptation to line-closed case (polygons), and (<b>c</b>) its empirical probabilistic distribution function.</p> "> Figure 3
<p>(<b>a</b>) The double buffer overlay method (DBOM), (<b>b</b>) its adaptation to the line-closed case (polygons), and (<b>c</b>) its average displacement estimation function.</p> "> Figure 4
<p>(<b>a</b>) Selected sheets of the MTN50K of the region of Andalusia (Spain) and its administrative boundaries, and (<b>b</b>) examples of polygonal features belonging to MTA10 and BCN25.</p> "> Figure 5
<p>Aggregated distribution functions: (<b>a</b>) SBOM and (<b>b</b>) DBOM.</p> "> Figure 6
<p>Flowchart of the proposed method.</p> "> Figure 7
<p>Statistical <span class="html-italic">f</span>-value and <span class="html-italic">p</span>-value parameters for the Kolmogorov-Smirnov test for the SBOM (<b>a</b>,<b>c</b>) and the DBOM (<b>b</b>,<b>d</b>) (1000 iterations).</p> "> Figure 8
<p>(<b>a</b>) Example of the use of the <span class="html-italic">f</span>-value graphic for determining a mean discrepancy between the sample and the population (case 1) or a maximum discrepancy (case 2), and (<b>b</b>) <span class="html-italic">p</span>-value obtained for case 1.</p> ">
Abstract
:1. Introduction
2. The Buffer-Based Methods Used and Their Adaptation to the Line-Closed Case
2.1. The Single Buffer Overlay Method (SBOM)
2.2. The Double Buffer Overlay Method (DBOM)
3. The Two Urban Geospatial Databases
- Coexistence criterion (CC): all the elements (in our case, buildings represented by means of polygons) used to apply our APAA procedure must exist in both GDBs. This basic principle, which seems obvious, is not always fulfilled in the real world, since two GDBs generated at different scales are normally not at the same generalisation level [28].
- Independence criterion (IC): the two GDBs must be independently produced, and in turn, neither of them can be derived from another cartographic product of a larger scale through any process, such as generalisation, which means that their quality has not been degraded.
- Interoperability criterion (IOC): It is necessary to ensure the interoperability between both GDBs according to the following aspects:
- Geometric interoperability: In this case, it is defined in purely cartographic terms, so it will hereinafter be referred to as cartographic interoperability. Two GDBs occupying the same geographic region must be comparable, both in terms of reference system and cartographic projection.
- Semantic interoperability: there must be no semantic heterogeneity between both GDBs—that is, differences in intended meaning of terms in specific contexts [15]. In this aspect, interoperability must occur at two different levels: schema and feature.
- Topological interoperability: the topological relationships must be preserved. In this sense, it can be stated that topological interoperability is a consequence and hence the basis of the two previously described interoperability processes (geometric and semantic) [7].
Characterization of the BCN25 Positional Accuracy by Means of the Single Buffer Overlay Method and the Double Buffer Overlay Method
4. Method
4.1. Simulation Process
- An initial sample size L = Lo = 5 km is considered.
- A simple random sampling is applied to the initial population, in order to extract a sample of size L. Here the individual perimeters of the polygons belonging to the MTA10 are added up. When the sum of the perimeter lengths exceeds the length L, the last pair of polygons included in the sample that cause this excess of length is not considered. In this sense, we must note that their exclusion had a minimal impact both on the sample size and the final results, since the mean value of the polygons’ perimeter belonging to MTA10 is 138 m (Table 2), representing between 2.75% and 0.14% of L when L ranges from 5 to 100 km.
- For both the SBOM and the DBOM, the observed distribution function (ODF) is obtained from each sample m of length L. The ODF (L,m) of the sample is compared to the population distribution function (PDF). Then, by means of the Kolmogorov–Smirnov test, the f-value and p-value are derived for each comparison case (see below).
- Steps 2 and 3 are repeated (m = 1000 times).
- For each sample size L, the mean values of the m iterations are derived for the f- and p-values.
- Increase L by the step ∆L = 5 km, and repeat steps 2–5 until L = Lmax = 100 km.
4.2. Comparisons
5. Results
- In order to define a sample size that will assure a certain value of mean discrepancy f between the sample (the ODF) and the population (the PDF);
- In order to define a sample size that will assure, with a probability of 95%, that the maximum discrepancy between the sample (the ODF) and the population (the PDF) is f.
6. Conclusions
- Gain a certain understanding of the sample size required under several different conditions concerning the mean distance value or maximum distance value between the ODFs and the PDF. This last has been confirmed by a practical example.
- Compute the variability of the estimation between the limits (sample sizes) of our simulation process. Specifically, this variability was reduced by the order of 4.5 times approximately for both methods.
Author Contributions
Conflicts of Interest
References
- Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal accuracy assessment of very high resolution Google earth images in the city of Rome, Italy. Int. J. Digit. Earth 2015, 9, 342–362. [Google Scholar] [CrossRef]
- Goodchild, M.; Hunter, G. A Simple Positional Accuracy Measure for Linear Features. Int. J. Geogr. Inf. Sci. 1997, 11, 299–306. [Google Scholar] [CrossRef]
- Kyriakidis, P.; Shortridge, A.; Goodchild, M. Geostatistics for conflation and accuracy assessment of digital elevation models. Int. J. Geogr. Inf. Sci. 1999, 13, 677–707. [Google Scholar] [CrossRef]
- Song, W.; Keller, J.M.; Haithcoat, T.L.; Davis, C.H. Relaxation-based point feature matching for vector map conflation. Trans. GIS 2011, 15, 43–60. [Google Scholar] [CrossRef]
- Smart, P.H.; Quinn, J.A.; Jones, C.B. City model enrichment. ISPRS J. Photogramm. Remote Sens. 2011, 66, 223–234. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Lu, F. Geometric-based approach for integrating VGI POIs and road networks. Int. J. Geogr. Inf. Sci. 2014, 28, 126–147. [Google Scholar] [CrossRef]
- Ruiz-Lendinez, J.J.; Ariza-López, F.J.; Ureña-Cámara, M.A.; Blázquez, E. Digital Map Conflation: A Review of the Process and a Proposal for Classification. Int. J. Geogr. Inf. Sci. 2011, 25, 1439–1466. [Google Scholar] [CrossRef]
- Lee, S.; Shan, J. Combining LIDAR elevation data and IKONOS multispectral imagery for coastal classification mapping. Mar. Geodesy 2003, 26, 117–127. [Google Scholar] [CrossRef]
- Bartels, M.; Wei, H.; Ferryman, J. Analysis of LIDAR data fused with co-registered bands. In Proceedings of the IEEE International Conference on Advanced Video and Signal-Based Surveillance, Sydney, Australia, 22–24 November 2006; Available online: http://www.cvg.reading.ac.uk/projects/LIDAR/index.html (accessed on 28 May 2018).
- Chen, L.; Teo, T.; Kuo, C.; Rau, J. Shaping polyhedral buildings by the fusion of vector maps and lidar point clouds. Photogramm. Eng. Remote Sens. 2008, 74, 1147–1157. [Google Scholar] [CrossRef]
- Elaksher, A. Fusion of hyperspectral images and lidar-based dems for coastal mapping. Opt. Lasers Eng. 2008, 46, 493–498. [Google Scholar] [CrossRef]
- Cornet, Y.; de Béthune, S.; Binard, M.; Muller, F.; Legros, G.; Nadasdi, I. RS Data fusion using local mean and variance matching algorithms: Their respective efficiency in different urban context. In Proceedings of the IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, 8–9 November 2001; Available online: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=985698 (accessed on 28 May 2018).
- Fanelli, A.; Leo, A.; Ferri, M. Remote sensing images data fusion: A wavelet transforms approach for urban analysis. In Proceedings of the IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, 8–9 November 2001; Available online: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=985698 (accessed on 28 May 2018).
- Wald, L.; Ranchin, T. Data fusion for a better knowledge of urban areas. In Proceedings of the IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, 1–14 June 2001; Available online: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=985698 (accessed on 28 May 2018).
- Xavier, E.; Ariza-López, F.J.; Ureña-Cámara, M.A. A survey of measures and methods for matching geospatial vector datasets. ACM Comput. Surv. 2016, 49, 39. [Google Scholar] [CrossRef]
- Bruns, H.T.; Egenhofer, M.J. Similarity of spatial scenes. In Proceedings of the 7th International Symposium on Spatial Data Handling, Delft, The Netherlands, 12–16 August 1996; pp. 31–42. [Google Scholar]
- Sheeren, D.; Mustière, S.; Zucker, J. A data-mining approach for assessing consistency between multiple representations in spatial databases. Int. J. Geogr. Inf. Sci. 2009, 23, 961–992. [Google Scholar] [CrossRef]
- Seo, S.; O’Hara, C.G. Quality assessment of linear data. Int. J. Geogr. Inf. Sci. 2009, 23, 1503–1525. [Google Scholar] [CrossRef]
- Ruiz-Lendínez, J.J.; Ariza-López, F.J.; Ureña-Cámara, M.A. Automatic positional accuracy assessment of geospatial databases using line-based methods. Surv. Rev. 2013, 45, 332–342. [Google Scholar] [CrossRef]
- Ruiz-Lendínez, J.J.; Ariza-López, F.J.; Ureña-Cámara, M.A. A point-based methodology for the automatic positional accuracy assessment of geospatial databases. Surv. Rev. 2016, 48, 269–277. [Google Scholar] [CrossRef]
- Ruiz-Lendínez, J.J.; Ureña-Cámara, M.A.; Ariza-López, F.J. A Polygon and Point-Based Approach to Matching Geospatial Features. ISPRS Int. J. Geo-Inf. 2017, 6, 399. [Google Scholar] [CrossRef]
- Koukoletsos, T.; Haklay, M.; Ellul, C. Assessing data completeness of VGI through an automated matching procedure for linear data. Trans. GIS 2012, 16, 477–498. [Google Scholar] [CrossRef]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Ariza-López, F.J.; Xavier, E.; Ureña-Cámara, M.A. Proposal of a web service for positional quality control of spatial data sets. In Proceedings of the International Workshop on Spatial Data and Map Quality, Valletta, Malta, 20–21 January 2015. [Google Scholar]
- Xavier, E.; Ariza-López, F.J.; Ureña-Cámara, M.A. Web service for positional quality assessment: The WPS tier. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W5, La Grande Motte, France, 28 September–3 October 2015; pp. 257–262. [Google Scholar]
- Xavier, E.; Ariza-López, F.J.; Ureña-Cámara, M.A. WPS for positional quality control applying the method proposed in UNE 148002. In Proceedings of the VI Jornadas Ibéricas de Infraestructuras de Datos Espaciales, Sevilla, Spain, 4–6 November 2015. [Google Scholar]
- Herrera, F.; Lozano, M.; Verdegay, J. Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioral Analysis. Artif. Intell. Rev. 1998, 12, 265–319. [Google Scholar] [CrossRef]
- Tveite, H.; Langaas, S. An accuracy assessment meted for geographical line data sets based on buffering. Int. J. Geogr. Inf. Sci. 1999, 13, 27–47. [Google Scholar] [CrossRef]
- Abbas, L.; Grussenmeyer, P.; Hottier, P. Contrôle de la planimétrie d´une base de données vectorielles: Une nouvelle méthode basée sur la distance de Hausdorff: El méthode du contrôle linéaire. Bull. Societé Française de Photogrammétrie et Télédétection 1995, 137, 6–11. [Google Scholar]
- Kagawa, Y.; Sekimoto, Y.; Shibaski, R. Comparative Study of Positional Accuracy Evaluation of Line Data. In Proceedings of the ACRS, Hong Kong, China, 22–25 November 1999. [Google Scholar]
- Johnston, D.; Timlin, D.; Szafoni, D.; Casanova, J.; Dilks, K. Quality Assurance/Quality Control Procedures for ITAM GIS Databases; US Army Corps of Engineers; Engineer Research and Development Center: Champaign, IL, USA, 2000. [Google Scholar]
- Van Niel, T.; McVicar, T.R. Experimental evaluation of positional accuracy estimates from linear network using point and line based testing methods. Int. J. Geogr. Inf. Sci. 2002, 16, 455–473. [Google Scholar] [CrossRef]
- Mozas-Calvache, A.T. Exactitud Posicional de Elementos Lineales en Cartografía. Memoria Línea de Investigación Tutelada; Departamento de Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén: Jaén, España, 2003. [Google Scholar]
- Hangouët, J.F. Computation of the Hausdorff distance between plane vector polylines. In Proceedings of the AutoCarto 12, Charlotte, NC, USA, 27–29 February 1995. [Google Scholar]
- Skidmore, A.; Turner, B. Map accuracy assessment using line intersect sampling. Photogramm. Eng. Remote Sens. 1992, 58, 1453–1457. [Google Scholar]
- Giordano, A.; Veregin, H. Il Controllo di Qualitá nei Sistemei Informative Territoriali; Cardo Editore: Venetia, Italia, 1994. [Google Scholar]
- Veregin, H. Quantifying positional error induced by line simplification. Int. J. Geogr. Inf. Sci. 2000, 14, 113–130. [Google Scholar] [CrossRef]
- Tveite, H.; Langaas, S. Accuracy assessment of geographical line data sets, the case of the digital chart of the world. In Proceedings of the 5th Scandinavian Research Conference on Geographical Information Systems (ScanGIS’95), Trondheim, Norway, 12–14 June 1995. [Google Scholar]
- Wiedemann, C. External evaluation of road networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2003, 34, 93–98. [Google Scholar]
- Chen, C.C.; Knoblock, C.A.; Shahabi, C. Automatically and accurately conflating raster maps with orthoimagery. Geoinformatica 2008, 12, 377–410. [Google Scholar] [CrossRef]
- Cartographic Institute of Andalusia (ICA). Mapa Topográfico de Andalucía 1:10,000 Vectorial (MTA10v_2001). Available online: http://www.ideandalucia.es/catalogo/info.php (accessed on 28 May 2018).
- National Geographic Institute of Spain (NGI). Cartographic Series: 1:25,000 and 1:50,000 Series. Available online: http://www.ign.es/ign/layout/series.do (accessed on 28 May 2018).
- González-Matesanz, J.; Dalda, A.; Malpica, J. A Range of ED50-ETRS89 Datum Transformation Models Tested on the Spanish Geodetic Network. Surv. Rev. 2006, 38, 654–667. [Google Scholar] [CrossRef]
- Ruiz-Lendinez, J.J.; Ureña-Cámara, M.A.; Ariza-López, F.J. Matching Viewer: Herramienta para la automatización del control de calidad posicional de la cartografía. Rev. Colegio Oficial de Ingeniería Geomática y Topográfica 2016, 35, 37–45. [Google Scholar]
- Ríos, D.; Ríos, S.; Martín, J. Simulación, Métodos y Aplicaciones; Ra-Ma: Madrid, Spain, 1997. [Google Scholar]
- Robert, C.; Casella, G. Monte Carlo Statistical Methods; Springer: New York, NY, USA, 2004. [Google Scholar]
- Ross, S.M. Simulation, 4th ed.; Academic Press: San Diego, CA, USA, 2006. [Google Scholar]
- William, H.; Brian, P.F.; Saul, A.T.; William, T.V. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Marsaglia, G.; Tsang, W.W.; Wang, J. Evaluating Kolmogorov’s distribution. J. Stat. Softw. 2003, 8, 1–4. [Google Scholar] [CrossRef]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference, 4th ed.; Marcel Dekker, Ltd.: London, UK, 2003. [Google Scholar]
- Press, W.A.; Vetterling, W.T.; Teukolsky, S.A.; Flannery, B.P. Numerical Recipes in Fortran. The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
Characteristics | Method | Sample Size (km) | Tested Scale | Reference Scale |
---|---|---|---|---|
Abbas et al. [29] | SBOM | 266 | 1:100,000 | 1:25,000 |
Goodchild and Hunter [2] | SBOM | 247 | 1:1,000,000 | 1:25,000 |
Kawaga et al. [30] | SBOM | 0.76 | 1:2500 | 1:500 |
Tveite and Langaas [28] | DBOM | - | 1:1,000,000 | 1:250,000 |
Johnston et al. [31] | SBOM | - | 1:24,000 | 0.7 m (Image) |
Van Niel and McVicar [32] | SBOM | 466 | 1:50,000 | 1.5 m (GPS) |
Mozas [33] | SBOM/DBOM | 136 | 1:25,000 | 2 m (GPS) |
Characteristics | BCN25 | MTA10 |
---|---|---|
Number of polygons (total number of cases) | 8863 | 9067 |
Number of polygons matched | 8676 | 8676 |
Number of polygons matched with an MAV > 0.8 | 3356 | 3356 |
Total length of the polygons’ perimeter | 455,735 m | 465,954 m |
Mean value of the polygons’ perimeter | 135 m | 138 m |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariza-López, F.J.; Ruiz-Lendínez, J.J.; Ureña-Cámara, M.A. Influence of Sample Size on Automatic Positional Accuracy Assessment Methods for Urban Areas. ISPRS Int. J. Geo-Inf. 2018, 7, 200. https://doi.org/10.3390/ijgi7060200
Ariza-López FJ, Ruiz-Lendínez JJ, Ureña-Cámara MA. Influence of Sample Size on Automatic Positional Accuracy Assessment Methods for Urban Areas. ISPRS International Journal of Geo-Information. 2018; 7(6):200. https://doi.org/10.3390/ijgi7060200
Chicago/Turabian StyleAriza-López, Francisco J., Juan J. Ruiz-Lendínez, and Manuel A. Ureña-Cámara. 2018. "Influence of Sample Size on Automatic Positional Accuracy Assessment Methods for Urban Areas" ISPRS International Journal of Geo-Information 7, no. 6: 200. https://doi.org/10.3390/ijgi7060200
APA StyleAriza-López, F. J., Ruiz-Lendínez, J. J., & Ureña-Cámara, M. A. (2018). Influence of Sample Size on Automatic Positional Accuracy Assessment Methods for Urban Areas. ISPRS International Journal of Geo-Information, 7(6), 200. https://doi.org/10.3390/ijgi7060200