High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte
"> Figure 1
<p>SEM micrographs of the high-mass loading hierarchically porous activated carbon electrode: (<b>a</b>,<b>b</b>) top-view and (<b>c</b>,<b>d</b>) cross-section. Scale bars of (<b>a</b>–<b>d</b>) are 3, 30, and 1 μm, respectively.</p> "> Figure 2
<p>The deionized (DI) water contact angle (<b>a</b>) and stress–strain curve (<b>b</b>) of the high-mass loading hierarchically porous activated carbon electrode.</p> "> Figure 3
<p>(<b>a</b>) Cyclic voltammograms and (<b>b</b>) average specific capacitances of a coin-type symmetric cell with high-mass loading hierarchically porous activated carbon electrodes recorded in 1.35–2.7 V at scanning rates from 1 to 10 mV/s.</p> "> Figure 4
<p>(<b>a</b>) Galvanostatic charge–discharge profiles, (<b>b</b>) rate capabilities, and (<b>c</b>) capacitance retention of a coin-type symmetric cell with high-mass loading hierarchically porous activated carbon electrodes in 1.35–2.7 V. The current densities used in (<b>a</b>,<b>b</b>) are 1 mA/cm<sup>2</sup> (0.12 A/g) to 10 mA/cm<sup>2</sup> (1.2 A/g), whereas the current used in (<b>c</b>) is 5 mA (i.e., 0.45 A/g and 3.76 mA/cm<sup>2</sup>).</p> "> Figure 5
<p>(<b>a</b>) Galvanostatic charge–discharge profiles, (<b>b</b>) rate capabilities, (<b>c</b>) Ragone plot, and (<b>d</b>) capacitance retention of a pouch-type symmetric cell with high-mass loading hierarchically porous activated carbon electrodes in 1.35–2.7 V. The current densities used in (<b>a</b>,<b>b</b>) are 1 mA/cm<sup>2</sup> (0.12 A/g) to 10 mA/cm<sup>2</sup> (1.2 A/g), while the current used in (<b>c</b>) is 245 mA (1.2 A/g and 10 mA/cm<sup>2</sup>).</p> "> Figure 6
<p>(<b>a</b>) Discharge capacitance as a function of cycle number and (<b>b</b>) capacitance retention of a pouch-type symmetric cell integrating by 10 pieces of high-mass loading hierarchically porous activated carbon electrodes in 1.35–2.7 V. The current used in is 1 A. Inset of (<b>a</b>) illustrates the galvanostatic charge–discharge profiles of the first and last five cycles.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of High-Mass Loading Hierarchically Porous Activated Carbon (HPAC) Electrode
2.2. Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Morphologies and Properties of High-Mass Loading Hierarchically Porous Activated Carbon (HPAC) Electrode
3.2. Electrochemical Performances of High-Mass Loading Hierarchically Porous Activated Carbon (HPAC) Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Energy Storage Database Projects. Available online: https://www.sandia.gov/ess-ssl/global-energy-storage-database-home/ (accessed on 2 December 2020).
- Miller, J.R.; Simon, P. Electrochemical Capacitors for Energy Management. Science 2018, 321, 651–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, G.S.; Larsson, S.H.; Oliveira, H.P.; Thyrel, M.; Lima, E.C. Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors—A Mini-Review. Nanomaterials 2020, 10, 1398. [Google Scholar] [CrossRef]
- Permatasari, F.A.; Irham, M.A.; Bisri, S.Z.; Iskandar, F. Carbon-based quantum dots for supercapacitors: Recent advances and future challenges. Nanomaterials 2021, 11, 91. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, Y.; Gong, Q.; Weng, M.; Li, Y.; Gan, J.; Wang, D.; Shao, Y.; Zhao, M.; Zhuang, D.; et al. Scalable preparation of hierarchical porous activated carbon/graphene composites for high performance supercapacitors. J. Mater. Chem. A 2019, 7, 10058–10066. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Han, K.; Qi, J.; Li, M.; Teng, Z. High performance hierarchical porous carbon derived from distinctive plant tissue for supercapacitor. Sci. Rep. 2019, 9, 17270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.; Wang, Z.; Luo, J.; Wu, W.; Liang, Y.; Tong, X.; Zhao, Z. Hierarchical porous carbon with interconnected ordered pores from biowaste for high-performance supercapacitor electrodes. Nanoscale Res. Lett. 2020, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, D.; Liu, Y.; Wang, H.; Wang, L. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem. Eng. J. 2020, 397, 125418. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, F.; Song, Y.; Li, Y. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 2017, 5, 17705–17733. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, W.; Alhebshi, N.A.; Salah, N.; Alshareef, H.N. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 2020, 4, 1900853. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, S.; Wang, L.; Jia, D. Application of plant-based porous carbon for supercapacitors. Acta Phys. Chim. Sin. 2020, 36, 1903055. [Google Scholar] [CrossRef]
- Minakshi, M.; Visbal, H.; Mitchell, D.R.; Fichtner, M. Bio-waste chicken eggshells to store energy. Dalton Trans. 2018, 47, 16828–16834. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; An, K.H.; Soo-Jin Park, S.J.; Kim, B.J. Mesopore-rich activated carbons for electrical double-layer capacitors by optimal activation condition. Nanomaterials 2019, 9, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez, N.; Ferrero, G.A.; Fuertes, A.B.; Sevilla, M. Sustainable salt template-assisted chemical activation for the production of porous carbons with enhanced power handling ability in Supercapacitors. Batter. Supercaps 2019, 2, 701–711. [Google Scholar] [CrossRef]
- Díez, N.; Ferrero, G.A.; Sevilla, M.; Fuertes, A.B. A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. J. Mater. Chem. A 2019, 7, 14280–14290. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Kierzek, K.; Min, J.; Chen, X.; Gong, J.; Niu, R.; Wen, X.; Azadmanjiri, J.; Mijowska, E.; Tang, T. Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications. J. Appl. Polym. Sci. 2020, 137, 48338. [Google Scholar] [CrossRef]
- Sevilla, M.; Díez, N.; Fuertes, A.B. More sustainable chemical activation strategies for the production of porous carbons. ChemSusChem 2021, 14, 94–117. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.L.; Li, J.; Daniel, C. Prospects for reducing the processing cost of lithium-ion batteries. J. Power Sources 2015, 275, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Zhu, J.; Li, Q.; Zhang, S.; Song, H.; Jia, D. Carbon materials for high mass-loading supercapacitors: Filling the gap between new materials and practical applications. J. Mater. Chem. A 2020, 8, 21930–21946. [Google Scholar] [CrossRef]
- Lin, Y.T.; Chang-Jian, C.W.; Hsieh, T.H.; Huang, J.H.; Weng, H.C.; Hsiao, Y.S.; Syu, W.L.; Chen, C.P. High-performance Li-ion capacitor constructed from biomass-derived porous carbon and high-rate Li4Ti5O12. Appl. Surf. Sci. 2021, 543, 148717. [Google Scholar] [CrossRef]
- Chen-Yang, Y.W.; Hung, T.F.; Huang, J.; Yang, F.L. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell. J. Power Sources 2007, 173, 183–188. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Li, X.; Lv, Z.; Wang, X.; Liu, Z.; Huang, X. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitor. Electrochim. Acta 2018, 282, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Peng, X.; Zhao, M.; Liu, P.; Xu, B.; Guo, J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RCS Adv. 2018, 8, 2858–2865. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.F.; Huang, J.; Chuang, H.J.; Bai, S.H.; Lai, Y.J.; Chen-Yang, Y.W. Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell. J. Power Sources 2008, 184, 165–171. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.; Meng, Y.; Zhang, Y.; Wei, Z. Integrated energy storage and electrochromic function in one flexible device: An energy storage smart window. Energy Environ. Sci. 2012, 5, 8384–8389. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, T.-F.; Hsieh, T.-H.; Tseng, F.-S.; Wang, L.-Y.; Yang, C.-C.; Yang, C.-C. High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte. Nanomaterials 2021, 11, 785. https://doi.org/10.3390/nano11030785
Hung T-F, Hsieh T-H, Tseng F-S, Wang L-Y, Yang C-C, Yang C-C. High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte. Nanomaterials. 2021; 11(3):785. https://doi.org/10.3390/nano11030785
Chicago/Turabian StyleHung, Tai-Feng, Tzu-Hsien Hsieh, Feng-Shun Tseng, Lu-Yu Wang, Chang-Chung Yang, and Chun-Chen Yang. 2021. "High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte" Nanomaterials 11, no. 3: 785. https://doi.org/10.3390/nano11030785