Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?—A New Theory for the Injury Mechanism
Abstract
:1. Introduction
2. Hypothesis: NC-ACL Injury Is Caused by Acute Compression Axonopathy Followed by a Harsher Secondary Damage Including the Injury of the ACL
2.1. Primary Damage Phase: Acute Compression Axonopathy Caused by Superposition of Compression under an Acute Stress Reaction
2.2. Secondary Damage Phase: Includes the NC-ACL Injury Due to Impaired Proprioception
3. Impairment of Proprioception
4. Innervation and Neural Control of the Proximal Tibia and Its Relevance in NC-ACL Injury
5. TAD Like Degeneration and the Role of Nitric Oxide (NO) in the Axonopathy
6. ACL Injury Prevention: Neuromuscular and Proprioceptive Training
7. Conclusions
- NC-ACL injury is proposed to be a dichotomous injury mechanism;
- Primary damage could be an acute compression proprioceptive sensory axonopathy in the proximal tibia with concomitant microcracks in the periosteum;
- Secondary damage is a harsher tissue damage when the ACL is also injured, leading to a subluxated knee joint, to bone bruises and to other tissue damage;
- NC-ACL injury is suggested to happen under an ASR in unaccustomed or strenuous eccentric exercise moments;
- Elevated PGE2 and NO are proposed to play a critical role in the initial axonal microdamage signaling in a dose dependent manner;
- A critical mechanism in the central nervous system is proposed to occur in the spinal dorsal horn;
- Activated NMDA receptors under an osteocalcin induced ASR are proposed to play a significant role in modulating the spinal sensory input and in the development of injury, especially the longitudinal aspect of it;
- Delayed latency of MLR is suggested to be indicative of proprioceptive impairment and could be translated as some of the monosynaptic neuronal connections of the stretch reflex are switched to polysynaptic ones;
- LH induced substantial TrkA and NGF gene expression and PGE2 release could explain why non-contact ACL injury is at least three-times more prevalent among female athletes;
- Analog dichotomous injury mechanism and impaired proprioceptive signaling is proposed in delayed onset muscle soreness, compression vertebral fracture and in other non-contact injuries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 1992, 24, 512–520. [Google Scholar] [CrossRef]
- Hootman, J.M.; Dick, R.; Agel, J. Epidemiology of collegiate injuries for 15 sports: Summary and recommendations for injury prevention initiatives. J. Athl. Train. 2007, 42, 311–319. [Google Scholar] [PubMed]
- Ali, N.; Rouhi, G. Barriers to predicting the mechanisms and risk factors of non-contact anterior cruciate ligament injury. Open Biomed. Eng. J. 2010, 4, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Kanamura, T.; Koshida, S.; Miyashita, K.; Okado, T.; Shimizu, T.; Yokoe, K. Mechanisms of the anterior cruciate ligament injury in sports activities: A twenty-year clinical research of 1700 athletes. J. Sports Sci. Med. 2010, 9, 669–675. [Google Scholar]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for Noncontact Anterior Cruciate Ligament Injuries. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- McNair, P.J.; Marshall, R.N.; Matheson, J.A. Important features associated with acute anterior cruciate ligament injury. N. Z. Med. J. 1990, 103, 537–539. [Google Scholar] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A., Jr.; Garrett, W.E., Jr. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Faunø, P.; Jakobsen, B.W. Mechanism of anterior cruciate ligament injuries in soccer. Int. J. Sports Med. 2005, 27, 75–79. [Google Scholar] [CrossRef]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Noncontact anterior cruciate ligament injuries: Mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Uhorchak, J.M.; Scoville, C.R.; Williams, G.N.; Arciero, R.A.; St Pierre, P.; Taylor, D.C. Risk Factors Associated with Noncontact Injury of the Anterior Cruciate Ligament. Am. J. Sports Med. 2003, 31, 831–842. [Google Scholar] [CrossRef]
- DeMorat, G.; Weinhold, P.; Blackburn, T.; Chudik, S.; Garrett, W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2004, 32, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.G.; Baumer, T.G.; Slade, J.M.; Smith, W.E.; Haut, R.C. Tibiofemoral contact pressures and osteochondral microtrauma during anterior cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee. Am. J. Sports Med. 2008, 36, 1966–1977. [Google Scholar] [CrossRef]
- Boden, B.P.; Torg, J.S.; Knowles, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M. The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. Am. J. Sports Med. 2007, 35, 1756–1769. [Google Scholar] [CrossRef] [Green Version]
- Prodromos, C.C.; Han, Y.; Rogowski, J.; Joyce, B.; Shi, K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 2007, 23, 1320–1325.e6. [Google Scholar] [CrossRef] [PubMed]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.; Yu, B.; Garrett, W.E. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef]
- Barendrecht, M.; Lezeman, H.C.; Duysens, J.; Smits-Engelsman, B.C. Neuromuscular training improves knee kinematics, in particular in valgus aligned adolescent team handball players of both sexes. J. Strength Cond. Res. 2011, 25, 575–584. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Khoury, J.; Succop, P.; Hewett, T.E. Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of acl injury. Br. J. Sports Med. 2010, 45, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Hewett, T.E. Differential neuromuscular training effects on acl injury risk factors in “high-risk” versus “low-risk” athletes. BMC Musculoskelet. Disord. 2007, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Mendiguchia, J.; Martinez-Ruiz, E.; Morin, J.B.; Samozino, P.; Edouard, P.; Alcaraz, P.E.; Esparza-Ros, F.; Mendez-Villanueva, A. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand. J. Med. Sci. Sports 2014, 25, e621–e629. [Google Scholar] [CrossRef]
- Stevenson, J.H.; Beattie, C.S.; Schwartz, J.B.; Busconi, B.D. Assessing the effectiveness of neuromuscular training programs in reducing the incidence of anterior cruciate ligament injuries in female athletes: A systematic review. Am. J. Sports Med. 2014, 43, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, V. The Penguin Dictionary of Physics; Penguin Books: London, UK, 1991. [Google Scholar]
- Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric muscle contractions: Risks and benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef]
- Morgan, D.L.; Allen, D.G. Early events in stretch-induced muscle damage. J. Appl. Physiol. 1999, 87, 2007–2015. [Google Scholar] [CrossRef] [Green Version]
- Sonkodi, B.; Berkes, I.; Koltai, E. Have we looked in the wrong direction for more than 100 years? Delayed onset muscle soreness is, in fact, neural microdamage rather than muscle damage. Antioxidants 2020, 9, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMaster, C. Fatigue impact on non-contact ACL injury risk associated with multi-directional jumping and landing in female athletes: A systematic review. J. Sci. Med. Sport 2013, 16, e4–e5. [Google Scholar] [CrossRef]
- Ruedl, G.; Helle, K.; Tecklenburg, K.; Schranz, A.; Fink, C.; Posch, M.; Burtscher, M. Einfluss von subjektiver Ermüdung auf vordere Kreuzbandverletzungen beim alpinen Skifahren: Ein Geschlechtervergleich. Sportverletz. Sportschaden 2015, 29, 226–230. [Google Scholar] [CrossRef]
- Sonkodi, B. Delayed onset muscle soreness (doms): The repeated bout effect and chemotherapy-induced axonopathy may help explain the dying-back mechanism in amyotrophic lateral sclerosis and other neurodegenerative diseases. Brain Sci. 2021, 11, 108. [Google Scholar] [CrossRef]
- Waldén, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef] [Green Version]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef] [PubMed]
- Myklebust, G.; Maehlum, S.; Engebretsen, L.; Strand, T.; Solheim, E. Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study covering two seasons. Scand. J. Med. Sci. Sports 1997, 7, 289–292. [Google Scholar] [CrossRef]
- Myklebust, G.; Maehlum, S.; Holm, I.; Bahr, R. A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand. J. Med. Sci. Sports 1998, 8, 149–153. [Google Scholar] [CrossRef]
- Condello, G.; Forte, R.; Monteagudo, P.; Ghinassi, B.; Di Baldassarre, A.; Capranica, L.; Pesce, C. Autonomic Stress Response and Perceived Effort Jointly Inform on Dual Tasking in Aging. Brain Sci. 2019, 9, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haid, T.; Federolf, P. The effect of cognitive resource competition due to dual-tasking on the irregularity and control of postural movement components. Entropy 2019, 21, 70. [Google Scholar] [CrossRef] [Green Version]
- Simons, D.J.; Chabris, C.F. Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception 1999, 28, 1059–1074. [Google Scholar] [CrossRef]
- Spinks, J.A.; Zhang, J.X.; Fox, P.T.; Gao, J.H.; Tan, L.H. More workload on the central executive of working memory, less attention capture by novel visual distractors: Evidence from an fmri study. NeuroImage 2004, 23, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Rees, G.; Russell, C.; Frith, C.D.; Driver, J. Inattentional blindness versus inattentional amnesia for fixated but ignored words. Science 1999, 286, 2504–2507. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.M.; Singh, P.; Khrimian, L.; Morgan, D.A.; Chowdhury, S.; Arteaga-Solis, E.; Horvath, T.L.; Domingos, A.I.; Marsland, A.L.; Yadav, V.K.; et al. Mediation of the acute stress response by the skeleton. Cell Metab. 2019, 30, 890–902.e8. [Google Scholar] [CrossRef]
- Radovanovic, D.; Peikert, K.; Lindström, M.; Domellöf, F.P. Sympathetic innervation of human muscle spindles. J. Anat. 2015, 226, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Schwartzman, R.J.; Kerrigan, J. The movement disorder of reflex sympathetic dystrophy. Neurology 1990, 40, 57. [Google Scholar] [CrossRef] [PubMed]
- Hellström, F.; Roatta, S.; Thunberg, J.; Passatore, M.; Djupsjöbacka, M. Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve. Exp. Brain Res. 2005, 165, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Roatta, S.; Windhorst, U.; Ljubisavljevic, M.; Johansson, H.; Passatore, M. Sympathetic modulation of muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles. J. Physiol. 2002, 540, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Schlereth, T.; Birklein, F. The sympathetic nervous system and pain. NeuroMolecular Med. 2008, 10, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.C.; Bigland, B.; Ritchie, J.M. The physiological cost of negative work. J. Physiol. 1952, 117, 380–390. [Google Scholar] [CrossRef]
- LaStayo, P.C.; Woolf, J.M.; Lewek, M.D.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S.L. Eccentric muscle contractions: Their contribution to injury, prevention, rehabilitation, and sport. J. Orthop. Sports Phys. Ther. 2003, 33, 557–571. [Google Scholar] [CrossRef] [Green Version]
- Hoppeler, H.; Herzog, W. Eccentric exercise: Many questions unanswered. J. Appl. Physiol. 2014, 116, 1405–1406. [Google Scholar] [CrossRef] [PubMed]
- Torzilli, P.A.; Deng, X.; Warren, R.F. The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am. J. Sports Med. 1994, 22, 105–112. [Google Scholar] [CrossRef]
- Kent, M. The Oxford Dictionary of Sports Science & Medicine; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Filardo, G.; Andriolo, L.; di Laura Frattura, G.; Napoli, F.; Zaffagnini, S.; Candrian, C. Bone bruise in anterior cruciate ligament rupture entails a more severe joint damage affecting joint degenerative progression. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.G.; Villwock, M.R.; Haut, R.C. Osteochondral microdamage from valgus bending of the human knee. Clin. Biomech. 2009, 24, 577–582. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Upton, A.R.; Mccomas, A.J. The double crush in nerve entrapment syndromes. Lancet 1973, 302, 359–362. [Google Scholar] [CrossRef]
- Kane, P.M.; Daniels, A.H.; Akelman, E. Double crush syndrome. J. Am. Acad. Orthop. Surg. 2015, 23, 558–562. [Google Scholar] [CrossRef] [Green Version]
- Grassi, A.; Agostinone, P.; Di Paolo, S.; Lucidi, G.A.; Macchiarola, L.; Bontempi, M.; Marchiori, G.; Bragonzoni, L.; Zaffagnini, S. Knee position at the moment of bone bruise could reflect the late phase of non-contact anterior cruciate ligament injury rather than the mechanisms leading to ligament failure. Knee Surg. Sports Traumatol. Arthrosc. 2021, 1–8. [Google Scholar] [CrossRef]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Dhaher, Y.Y.; Tsoumanis, A.D.; Houle, T.T.; Rymer, W.Z. Neuromuscular reflexes contribute to knee stiffness during valgus loading. J. Neurophysiol. 2005, 93, 2698–2709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular contact in a three-dimensional model of the knee. J. Biomech. 1991, 24, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Hull, M.L.; Berns, G.S.; Varma, H.; Patterson, H.A. Strain in the medial collateral ligament of the human knee under single and combined loads. J. Biomech. 1996, 29, 199–206. [Google Scholar] [CrossRef]
- Renström, P.; Arms, S.W.; Stanwyck, T.S.; Johnson, R.J.; Pope, M.H. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am. J. Sports Med. 1986, 14, 83–87. [Google Scholar] [CrossRef]
- Olmstead, T.G.; Wevers, H.W.; Bryant, J.T.; Gouw, G.J. Effect of muscular activity on valgus/varus laxity and stiffness of the knee. J. Biomech. 1986, 19, 565–577. [Google Scholar] [CrossRef]
- Kearney, R.E.; Hunter, I.W. System identification of human joint dynamics. Crit. Rev. Biomed. Eng. 1990, 18, 55–87. [Google Scholar] [PubMed]
- Dhaher, Y.Y.; Tsoumanis, A.D.; Rymer, W.Z. Reflex muscle contractions can be elicited by valgus positional perturbations of the human knee. J. Biomech. 2003, 36, 199–209. [Google Scholar] [CrossRef]
- Morganti, C.M.; McFarland, E.G.; Cosgarea, A.J. Saphenous neuritis: A poorly understood cause of medial knee pain. J. Am. Acad. Orthop. Surg. 2002, 10, 130–137. [Google Scholar] [CrossRef]
- Clendenen, S.R.; Whalen, J.L. Saphenous nerve innervation of the medial ankle. Local Reg. Anesth. 2013, 6, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, N.M.; Helms, C.A. Mr imaging of the knee: Findings in asymptomatic collegiate basketball players. AJR Am. J. Roentgenol. 2002, 179, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.A.; McNair, P.J.; Lewis, G.N.; Dalbeth, N. Quadriceps arthrogenic muscle inhibition: The effects of experimental knee joint effusion on motor cortex excitability. Arthritis Res. Ther. 2014, 16, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milne, R.J.; Aniss, A.M.; Kay, N.E.; Gandevia, S.C. Reduction in perceived intensity of cutaneous stimuli during movement: A quantitative study. Exp. Brain Res. 1988, 70, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.; Shenasa, J.; Chapman, C.E. Time course and magnitude of movement-related gating of tactile detection in humans. I. Importance of stimulus location. J. Neurophysiol. 1998, 79, 947–963. [Google Scholar] [CrossRef]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Frith, C.D.; Blakemore, S.J.; Wolpert, D.M. Abnormalities in the awareness and control of action. Philos. Trans. R Soc. B Biol. Sci. 2000, 355, 1771–1788. [Google Scholar] [CrossRef] [Green Version]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Saxton, J.M.; Clarkson, P.M.; James, R.; Miles, M.; Westerfer, M.; Clark, S.; Donnelly, A.E. Neuromuscular dysfunction following eccentric exercise. Med. Sci. Sports Exerc. 1995, 27, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.E.; Brockett, C.L.; Morgan, D.L.; Whitehead, N.P.; Proske, U. Effect of eccentric muscle contractions on Golgi tendon organ responses to passive and active tension in the cat. J. Physiol. 2002, 538, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, J.E.; Morgan, D.L.; Proske, U. Responses of muscle spindles following a series of eccentric contractions. Exp. Brain Res. 2004, 157, 234–240. [Google Scholar] [CrossRef]
- Krogsgaard, M.R.; Dyhre-Poulsen, P.; Fischer-Rasmussen, T. Cruciate ligament reflexes. J. Electromyogr. Kinesiol. 2002, 12, 177–182. [Google Scholar] [CrossRef]
- Di Fabio, R.P.; Graf, B.; Badke, M.B.; Breunig, A.; Jensen, K. Effect of knee joint laxity on long-loop postural reflexes: Evidence for a human capsular-hamstring reflex. Exp. Brain Res. 1992, 90, 189–200. [Google Scholar] [CrossRef]
- Melnyk, M.; Faist, M.; Gothner, M.; Claes, L.; Friemert, B. Changes in stretch reflex excitability are related to “giving way” symptoms in patients with anterior cruciate ligament rupture. J. Neurophysiol. 2007, 97, 474–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miko, S.C.; Simon, J.E.; Monfort, S.M.; Yom, J.P.; Ulloa, S.; Grooms, D.R. Postural stability during visual-based cognitive and motor dual-tasks after aclr. J. Sci. Med. Sport 2021, 24, 146–151. [Google Scholar] [CrossRef]
- Chaput, M.; Onate, J.A.; Simon, J.E.; Criss, C.R.; Jamison, S.; McNally, M.; Grooms, D.R. Visual cognition associated with knee proprioception, time to stability, and sensory integration neural activity after acl reconstruction. J. Orthop. Res. 2021, 10, 1002–25014. [Google Scholar] [CrossRef]
- Grooms, D.R.; Onate, J.A. Neuroscience application to noncontact anterior cruciate ligament injury prevention. Sports Health 2015, 8, 149–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanik, C. Brains and sprains: The brain’s role in noncontact anterior cruciate ligament injuries. J. Athl. Train. 2015, 50, 1100–1102. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, K.; Ji, S.; Miya, A.; Yoda, M.; Hamada, Y.; Tanaka, T.; Takao-Kawabata, R.; Kawaai, K.; Kuroda, Y.; Shibata, S. Innervation of the tibial epiphysis through the intercondylar foramen. Bone 2019, 120, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Mantyh, P.W. The neurobiology of skeletal pain. Eur. J. Neurosci. 2014, 39, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.; Dunham, J.P.; Murray, F.; Read, S.; Donaldson, L.F.; Lawson, S.N. Spontaneous firing in c-fibers and increased mechanical sensitivity in A-fibers of knee joint-associated mechanoreceptive primary afferent neurones during mia-induced osteoarthritis in the rat. Osteoarthr. Cartil. 2012, 20, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, L.F. Neurogenic mechanisms in arthritis. In Neuroimmune Biology; Jancsó, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 8, pp. 211–241. [Google Scholar]
- Martin, C.D.; Jimenez-Andrade, J.M.; Ghilardi, J.R.; Mantyh, P.W. Organization of a unique net-like meshwork of cgrp+ sensory fibers in the mouse periosteum: Implications for the generation and maintenance of bone fracture pain. Neurosci. Lett. 2007, 427, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Zylka, M.J.; Rice, F.L.; Anderson, D.J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to mrgprd. Neuron 2005, 45, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Andrade, J.M.; Mantyh, W.G.; Bloom, A.P.; Xu, H.; Ferng, A.S.; Dussor, G.; Vanderah, T.W.; Mantyh, P.W. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: Therapeutic opportunity for treating skeletal pain. Bone 2010, 46, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Andrade, J.M.; Bloom, A.P.; Mantyh, W.G.; Koewler, N.J.; Freeman, K.T.; Delong, D.; Ghilardi, J.R.; Kuskowski, M.A.; Mantyh, P.W. Capsaicin-sensitive sensory nerve fibers contribute to the generation and maintenance of skeletal fracture pain. Neuroscience 2009, 162, 1244–1254. [Google Scholar] [CrossRef] [Green Version]
- Nencini, S.; Ivanusic, J.J. The physiology of bone pain. How much do we really know? Front. Physiol. 2016, 7, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elefteriou, F.; Campbell, P.; Ma, Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif. Tissue Int. 2014, 94, 140–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelbourne, K.D.; Clark, M.; Gray, T. Minimum 10-year follow-up of patients after an acute, isolated posterior cruciate ligament injury treated nonoperatively. Am. J. Sports Med. 2013, 41, 1526–1533. [Google Scholar] [CrossRef]
- Rochefort, G.Y.; Benhamou, C.-L. Osteocytes are not only mechanoreceptive cells. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Batra, N.; Burra, S.; Siller-Jackson, A.J.; Gu, S.; Xia, X.; Weber, G.F.; DeSimone, D.; Bonewald, L.F.; Lafer, E.M.; Sprague, E.; et al. Mechanical stress-activated integrin 5 1 induces opening of connexin 43 hemichannels. Proc. Natl. Acad. Sci. USA 2012, 109, 3359–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralston, H.J., III; Miller, M.R.; Kasahara, M. Nerve endings in human fasciae, tendons, ligaments, periosteum, and joint synovial membrane. Anat. Rec. 1960, 136, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Levy, D. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior. Pain 2014, 155, 1392–1400. [Google Scholar] [CrossRef] [Green Version]
- Blecher, R.; Krief, S.; Galili, T.; Assaraf, E.; Stern, T.; Anekstein, Y.; Agar, G.; Zelzer, E. The proprioceptive system regulates morphologic restoration of fractured bones. Cell Rep. 2017, 20, 1775–1783. [Google Scholar] [CrossRef] [Green Version]
- Blecher, R.; Heinemann-Yerushalmi, L.; Assaraf, E.; Konstantin, N.; Chapman, J.R.; Cope, T.C.; Bewick, G.S.; Banks, R.W.; Zelzer, E. New functions for the proprioceptive system in skeletal biology. Philos. Trans. R Soc. B Biol. Sci. 2018, 373, 20170327. [Google Scholar] [CrossRef] [PubMed]
- Donnally, I.C.; DiPompeo, C.M.; Varacallo, M. Vertebral Compression Fractures; Statpearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Maempel, J.F.; Maempel, F.Z. The speedboat vertebral fracture: A hazard of holiday watersports. Scott. Med. J. 2018, 64, 42–48. [Google Scholar] [CrossRef]
- Menorca, R.M.; Fussell, T.S.; Elfar, J.C. Nerve Physiology. Hand Clin. 2013, 29, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–978. [Google Scholar] [CrossRef]
- Sufka, K.J.; Price, D.D. Gate Control Theory Reconsidered. Brain Mind 2002, 3, 277–290. [Google Scholar] [CrossRef]
- Guo, D.; Hu, J. Spinal presynaptic inhibition in pain control. Neuroscience 2014, 283, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardoni, R. Role of presynaptic glutamate receptors in pain transmission at the spinal cord level. Curr. Neuropharmacol. 2013, 11, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradwell, M.A.; Callister, R.J.; Graham, B.A. Reviewing the case for compromised spinal inhibition in neuropathic pain. J. Neural Transm. 2019, 127, 481–503. [Google Scholar] [CrossRef]
- Heckman, C.J.; Gorassini, M.A.; Bennett, D.J. Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle Nerve 2005, 31, 135–156. [Google Scholar] [CrossRef]
- Deng, M.; Chen, S.R.; Pan, H.L. Presynaptic nmda receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell. Mol. Life Sci. 2019, 76, 1889–1899. [Google Scholar] [CrossRef]
- Venugopal, S.; Hamm, T.M.; Crook, S.M.; Jung, R. Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury. J. Neurophysiol. 2011, 106, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Klein-Nulend, J.; Semeins, C.M.; Ajubi, N.E.; Nijweide, P.J.; Burger, E.H. Pulsating fluid flow increases nitric oxide (no) synthesis by osteocytes but not periosteal fibroblasts—Correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 1995, 217, 640–648. [Google Scholar] [CrossRef]
- Klein-Nulend, J.; Helfrich, M.H.; Sterck, J.G.; MacPherson, H.; Joldersma, M.; Ralston, S.H.; Semeins, C.M.; Burger, E.H. Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem. Biophys. Res. Commun. 1998, 250, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H.; Takano, Y.; Owan, I.; Murrell, G.A. Nitric oxide inhibitor l-name suppresses mechanically induced bone formation in rats. Am. J. Physiol. 1996, 270, E634–E639. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J.; Wimalawansa, S. Nitric oxide and bone. Ann. N. Y. Acad. Sci. 2010, 1192, 391–403. [Google Scholar] [CrossRef]
- Pitsillides, A.A.; Rawlinson, S.C.; Suswillo, R.F.; Bourrin, S.; Zaman, G.; Lanyon, L.E. Mechanical strain-induced no production by bone cells: A possible role in adaptive bone (re)modeling? FASEB J. 1995, 9, 1614–1622. [Google Scholar] [CrossRef] [Green Version]
- Zaman, G.; Pitsillides, A.A.; Rawlinson, S.C.; Suswillo, R.F.; Mosley, J.R.; Cheng, M.Z.; Platts, L.A.; Hukkanen, M.; Polak, J.M.; Lanyon, L.E. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J. Bone Miner. Res. 1999, 14, 1123–1131. [Google Scholar] [CrossRef]
- Corbett, S.A.; Hukkanen, M.; Batten, J.; McCarthy, I.D.; Polak, J.M.; Hughes, S.P. Nitric oxide in fracture repair. Differential localisation, expression and activity of nitric oxide synthases. J. Bone Jt. Surg. Br. 1999, 81, 531–537. [Google Scholar] [CrossRef]
- Corbett, S.A.; McCarthy, I.D.; Batten, J.; Hukkanen, M.; Polak, J.M.; Hughes, S.P. Nitric oxide mediated vasoreactivity during fracture repair. Clin. Orthop. Relat. Res. 1999, 365, 247–253. [Google Scholar] [CrossRef]
- Diwan, A.D.; Wang, M.X.; Jang, D.; Zhu, W.; Murrell, G.A. Nitric oxide modulates fracture healing. J. Bone Miner. Res. 2010, 15, 342–351. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Chapter 59—Skeletal effects of nitric oxide: Novel agent for osteoporosis. In Principles of Bone Biology, 3rd ed.; Bilezikian, J.P., Raisz, L.G., Martin, T.J., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 1273–1310. [Google Scholar]
- Wimalawansa, S.J. Chapter 53—Calcitonin: History, physiology, pathophysiology and therapeutic applications. In Osteoporosis in Men, 2nd ed.; Orwoll, E.S., Bilezikian, J.P., Vanderschueren, D., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 653–666. [Google Scholar]
- Lehmann, H.C.; Köhne, A.; Meyer zu Horste, G.; Dehmel, T.; Kiehl, O.; Hartung, H.P.; Kastenbauer, S.; Kieseier, B.C. Role of Nitric Oxide as Mediator of Nerve Injury in Inflammatory Neuropathies. J. Neuropathol. Exp. Neurol. 2007, 66, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.M.; Russell, J.W.; Low, P.; Feldman, E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 2004, 25, 612–628. [Google Scholar] [CrossRef] [PubMed]
- Janes, K.; Doyle, T.; Bryant, L.; Esposito, E.; Cuzzocrea, S.; Ryerse, J.; Bennett, G.J.; Salvemini, D. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase. Pain 2013, 154, 2432–2440. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Guo, C.; Vasko, M.R.; Kelley, M.R. Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons. Cancer Res. 2008, 68, 6425–6434. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.J.; Liu, G.K.; Xiao, W.H.; Jin, H.W.; Siau, C. Terminal arbor degeneration—A novel lesion produced by the antineoplastic agent paclitaxel. Eur. J. Neurosci. 2011, 33, 1667–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cashman, C.R.; Höke, A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci. Lett. 2015, 596, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Metodiewa, D.; Kośka, C. Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox. Res. 1999, 1, 197–233. [Google Scholar] [CrossRef]
- Tavarelli, M.; Sarfati, J.; De Gennes, C.; Haroche, J.; Buffet, C.; Ghander, C.; Simon, J.M.; Ménégaux, F.; Leenhardt, L. Hypertrophic osteoarthropathy and follicular thyroid cancer: A rare paraneoplastic syndrome. Eur. Thyroid J. 2015, 4, 266–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uppal, S.; Diggle, C.P.; Carr, I.M.; Fishwick, C.W.; Ahmed, M.; Ibrahim, G.H.; Helliwell, P.S.; Latos-Bieleńska, A.; Phillips, S.E.; Markham, A.F.; et al. Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nat. Genet. 2008, 40, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, J.W.; Fu, W.Z.; Zhang, C.Q.; Zhang, Z.L. Mutations in the slco2a1 gene and primary hypertrophic osteoarthropathy: A clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 2013, 98, E923–E933. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Zazulak, B.T.; Myer, G.D. Effects of the menstrual cycle on anterior cruciate ligament injury risk: A systematic review. Am. J. Sports Med. 2007, 35, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Dissen, G.A.; Hill, D.F.; Costa, M.E.; Dees, C.W.; Lara, H.E.; Ojeda, S.R. A role for trkA nerve growth factor receptors in mammalian ovulation. Endocrinology 1996, 137, 198–209. [Google Scholar] [CrossRef]
- Renstrom, P.; Ljungqvist, A.; Arendt, E.; Beynnon, B.; Fukubayashi, T.; Garrett, W.; Georgoulis, T.; Hewett, T.E.; Johnson, R.; Krosshaug, T.; et al. Non-contact ACL injuries in female athletes: An International Olympic Committee current concepts statement. Br. J. Sports Med. 2008, 42, 394–412. [Google Scholar] [CrossRef] [Green Version]
- Lind, M.; Menhert, F.; Pedersen, A.B. The first results from the Danish ACL reconstruction registry: Epidemiologic and 2 year follow-up results from 5818 knee ligament reconstructions. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 117–124. [Google Scholar] [CrossRef]
- Bencke, J.; Aagaard, P.; Zebis, M.K. Muscle activation during acl injury risk movements in young female athletes: A narrative review. Front. Physiol. 2018, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Dargo, L.; Robinson, K.J.; Games, K.E. Prevention of knee and anterior cruciate ligament injuries through the use of neuromuscular and proprioceptive training: An evidence-based review. J. Athl. Train. 2017, 52, 1171–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, P.L.; Campêlo, M.; Mendonca, T.; Fontes, L.A.M.; Brito, R.M.; Monte-Silva, K. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study. PLoS ONE 2018, 13, e0195276. [Google Scholar] [CrossRef] [Green Version]
- Pearcey, G.E.P.; Noble, S.A.; Munro, B.; Zehr, E.P. Spinal cord excitability and sprint performance are enhanced by sensory stimulation during cycling. Front. Hum. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knikou, M.; Mummidisetty, C.K. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J. Neurophysiol. 2014, 111, 2264–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, M.J.; Winkelmann, Z.K.; Powden, C.J.; Games, K.E. Proprioceptive training for the prevention of ankle sprains: An evidence-based review. J. Athl. Train. 2017, 52, 1065–1067. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.B.; Waxman, J.P.; Richter, S.J.; Shultz, S.J. Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonkodi, B.; Bardoni, R.; Hangody, L.; Radák, Z.; Berkes, I. Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?—A New Theory for the Injury Mechanism. Life 2021, 11, 443. https://doi.org/10.3390/life11050443
Sonkodi B, Bardoni R, Hangody L, Radák Z, Berkes I. Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?—A New Theory for the Injury Mechanism. Life. 2021; 11(5):443. https://doi.org/10.3390/life11050443
Chicago/Turabian StyleSonkodi, Balázs, Rita Bardoni, László Hangody, Zsolt Radák, and István Berkes. 2021. "Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?—A New Theory for the Injury Mechanism" Life 11, no. 5: 443. https://doi.org/10.3390/life11050443
APA StyleSonkodi, B., Bardoni, R., Hangody, L., Radák, Z., & Berkes, I. (2021). Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?—A New Theory for the Injury Mechanism. Life, 11(5), 443. https://doi.org/10.3390/life11050443