MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis
<p>Workflow for patient selection. ATA: American Thyroid Association. We reviewed 788 thyroid cancer samples for patients who underwent subtotal/total thyroidectomy for papillary or follicular thyroid carcinoma. Histopathological analysis was performed, and samples with insufficient tissue available for molecular work or lack of paired non-cancer tissues were excluded. After accounting for selection bias through propensity score analysis, two groups were established with similar general baseline features: (1) 34 paired cancer and non-cancer tissues for patients who underwent thyroidectomy and (2) another 34 paired tissues for those who received RAI following tumor resection.</p> "> Figure 2
<p>Schemes selection of candidates for poor prognostic miRNAs in thyroid cancer. (<b>A</b>) Venn diagram showing the intersection between putative diagnostic and prognostic miRNA biomarkers identified by meta-profiling of transcriptomic signature of high-throughput experiments [data source: dbDEMC (<a href="https://www.biosino.org/dbDEMC/index" target="_blank">https://www.biosino.org/dbDEMC/index</a>) (accessed on 20 May 2021) and miRNAs targeting genes in thyroid cancer KEGG pathway [data source: DIANA-miRPath v.3.0 (<a href="http://www.miRNA.gr/miRPathv2" target="_blank">http://www.miRNA.gr/miRPathv2</a>) (accessed on 20 May 2021)]. (<b>B</b>) Expression profile of significant miRNAs of thyroid cancer tissues in high-throughput experiments (TCGA and microarray).</p> "> Figure 3
<p>Relative expression of microRNAs in thyroid cancer tissues compared to paired counterparts. The plot represents overall analysis for the 68 patients and subgroup analysis for the 34 RAI and 34 non-RAI groups. (<b>A</b>–<b>C</b>) Box plots show the median and interquartile range in cancer. Log2 fold change below 0 indicates downregulation, while greater than 0 indicates overexpression compared to normal. Wilcoxon matched-pairs signed-rank test was used for comparison. Significance was set at <span class="html-italic">p</span>-value < 0.05. (<b>D</b>–<b>F</b>) Correlation matrix for gene co-expression. Spearman’s correlation analysis was performed. The correlation coefficient (−1 to 1) is presented in the top right of the matrix, and its equivalent <span class="html-italic">p</span>-value is in the bottom left.</p> "> Figure 4
<p>Tissue microRNA expression profile and tumor progression. Plots represent overall analysis for the 68 patients and subgroup analysis for the 34 patients in the RAI group. Mann–Whitney U test was used to compare the expression levels between indolent and progressive samples. Log2 fold change was estimated using the ddCT method. (<b>A</b>–<b>C</b>) Overall analysis, (<b>D</b>–<b>F</b>) RAI group, and (<b>G</b>–<b>I</b>) non-RAI group.</p> "> Figure 5
<p>Predictive role of microRNA risk score. The risk score was calculated using the coefficient of the multivariate Cox regression analysis, using the following formula: (−0.260 × expression level of miR-204) + (0.523 × expression level of miR-221) + (0.75 × expression level of miR-222). (<b>A</b>,<b>B</b>) Principal component analysis for data exploration. Data are presented across X and Y axes. Arrows for each variable point in the direction of increasing values of that variable. There was a clear demarcation between the two groups (indolent and aggressive tumors), with higher levels (long arrows) of miR-221 and miR-222 in progressive tumors, while the miR-204 level was higher in the direction of non-progressive samples. The microRNA discrimination ability performed slightly better in patients following radioactive iodine. (<b>C</b>,<b>D</b>) Relative expression of microRNAs in progressed samples compared to indolent. Box plots show the median and interquartile range in cancer. Mann–Whitney U test was used. <span class="html-italic">p</span>-value was set significant at <0.05. (<b>E</b>) Fagan’s Bayesian nomogram for forecasting probabilities. In this nomogram, a straight line drawn from a patient’s pre-test probability of disease (left axis) through the likelihood ratio of the test (middle axis) will intersect with the post-test probability of disease (right axis). Prior probability (odds): 53 ± 1.1% and LR+: 28 (95% CI = 4.12–196), LR-: 0.11 (95% CI = 0.05–0.29) yielded a post-test probability (odds) of 97 ± 31.5% for positive test and 11 ± 0.1% for negative test. (<b>F</b>,<b>G</b>) Kaplan–Meier curves for survival analysis. Log-rank test was used to compare high-risk and low-risk groups categorized based on the microRNA risk score above and below 0.86.</p> "> Figure 6
<p>A nomogram for thyroid cancer prognosis. (<b>A</b>) Nomogram is predicting 2- and 5-year progression-free survival. The current nomogram is derived from well-differentiated thyroid cancer cohorts who underwent surgery at a single center. The outcome measured was a post-operative progression. Cox proportional hazard model was applied. (<b>B</b>) Example for using the nomogram. Assumed having a 20-year-old female patient with a body mass index (BMI) of 20 Kg/m<sup>2</sup>, whose tissue microRNA risk score was high at 2.5, and received radioactive iodine (RAI) ablation. Each variable will be scored on its points scale. The scores for all variables are then added to obtain the total score, and a vertical line is drawn from the total-points row to estimate the probability of survival rates within 2 years and 5 years. *** indicates <span class="html-italic">p</span> < 0.001.</p> "> Figure 7
<p>Causal network analysis for the predicted effect of microRNAs deregulation on thyroid cancer disease. Overexpressed miR-221 and miR-222 (red node) and downregulation of miR-204 (green node) are predicted to activate (orange) and inhibit (blue) genes, which lead to activation of thyroid cancer KEGG pathway. Data source: Knowledge base Ingenuity Pathway Analysis (IPA, Qiagen Inc., <a href="https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis" target="_blank">https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis</a>) (accessed on 21 May 2021).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinformatic Selection of MiRNAs
2.2. Study Population and Propensity Score-Matched Groups
2.3. Study Variables and Clinical Assessment
2.4. Tissue Sample Preparation and Histopathological Assessment
2.5. RNA Extraction and MicroRNA Quantification
2.6. Statistical Analysis
2.7. Target Gene Prediction, Functional Enrichment Analysis, and External Validation
2.8. Literature Review
3. Results
3.1. TCGA and Microarray Thyroid Cancer Cohorts
3.2. Discovery of Candidate Markers Associated with Progression
3.3. Characteristics of Papillary Thyroid Cancer Patients
3.4. MicroRNA Expression Levels in Thyroid Cancer
3.5. Association of MicroRNAs with Clinical and Pathological Features
3.6. MicroRNA Predictive Performance for Progression Following RAI Treatment
3.7. Prognostic Value of MicroRNA Risk Score and Nomogram Construction
3.8. Meta-Profiling Signature of MicroRNAs in Cancer
3.9. Discovery of the Regulatory Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef]
- Sisdelli, L.; Cordioli, M.I.C.V.; Vaisman, F.; Moraes, L.; Colozza-Gama, G.A.; Alves, P.A.G., Jr.; Araújo, M.L., Jr.; Alves, M.T.S.; Monte, O.; Longui, C.A.; et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. Pediatr. Blood Cancer 2019, 66, e27707. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, P.; Hu, H.-Y.; Ou-Yang, D.-J.; Khushbu, R.-A.; Tan, H.-L.; Huang, P.; Chang, S. Kinase gene fusions: Roles and therapeutic value in progressive and refractory papillary thyroid cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Elisei, R. A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer. Int. J. Mol. Sci. 2021, 22, 1726. [Google Scholar] [CrossRef] [PubMed]
- Sondorp, L.H.; Ogundipe, V.M.; Groen, A.H.; Kelder, W.; Kemper, A.; Links, T.P.; Coppes, R.P.; Kruijff, S. Patient-Derived Papillary Thyroid Cancer Organoids for Radioactive Iodine Refractory Screening. Cancers 2020, 12, 3212. [Google Scholar] [CrossRef]
- Lechner, M.; Praw, S.S.; Angell, T.E. Treatment of Differentiated Thyroid Carcinomas. Surg. Pathol. Clin. 2019, 12, 931–942. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, R.M.; Leboeuf, R. Follow up Approaches in Thyroid Cancer: A Risk Adapted Paradigm. Endocrinol. Metab. Clin. N. Am. 2008, 37, 419–435. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Wang, L.; Wang, J.; Wang, D.; Xin, Z.; Liu, Y.; Zhao, Q. Diagnostic value of fine-needle aspiration combined with ultrasound for thyroid cancer. Oncol. Lett. 2019, 18, 2316–2321. [Google Scholar] [CrossRef]
- Bernier, M.-O.; Morel, O.; Rodien, P.; Muratet, J.-P.; Giraud, P.; Rohmer, V.; Jeanguillaume, C.; Bigorgne, J.-C.; Jallet, P. Prognostic value of an increase in the serum thyroglobulin level at the time of the first ablative radioiodine treatment in patients with differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1418–1421. [Google Scholar] [CrossRef]
- Yim, J.H.; Kim, W.B.; Kim, E.Y.; Kim, W.G.; Kim, T.Y.; Ryu, J.-S.; Moon, D.H.; Sung, T.-Y.; Yoon, J.H.; Kim, S.C.; et al. Adjuvant Radioactive Therapy after Reoperation for Locoregionally Recurrent Papillary Thyroid Cancer in Patients Who Initially Underwent Total Thyroidectomy and High-Dose Remnant Ablation. J. Clin. Endocrinol. Metab. 2011, 96, 3695–3700. [Google Scholar] [CrossRef] [Green Version]
- Yim, J.H.; Kim, W.B.; Kim, E.Y.; Kim, W.G.; Kim, T.Y.; Ryu, J.S.; Gong, G.; Hong, S.J.; Shong, Y.K. The outcomes of first reoperation for locoregionally recurrent/persistent papillary thyroid carcinoma in patients who initially underwent total thyroidectomy and remnant ablation. J. Clin. Endocrinol. Metab. 2011, 96, 2049–2056. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.G.; Yoon, J.H.; Kim, W.B.; Kim, T.Y.; Kim, E.Y.; Kim, J.M.; Ryu, J.S.; Gong, G.; Hong, S.J.; Shong, Y.K. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 2008, 93, 4683–4689. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, D.; Gorshtein, A.; Robenshtok, E.; Masri-Iraqi, H.; Akirov, A.; Bitan, H.D.; Shimon, I.; Benbassat, C. Second Radioiodine Treatment: Limited Benefit for Differentiated Thyroid Cancer With Locoregional Persistent Disease. J. Clin. Endocrinol. Metab. 2018, 103, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, J.; Hossain, G.S.; Kocerha, J. The Potential for microRNA Therapeutics and Clinical Research. Front. Genet. 2019, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Silaghi, C.A.; Lozovanu, V.; Silaghi, H.; Georgescu, R.D.; Pop, C.; Dobrean, A.; Georgescu, C.E. The Prognostic Value of MicroRNAs in Thyroid Cancers—A Systematic Review and Meta-Analysis. Cancers 2020, 12, 2608. [Google Scholar] [CrossRef]
- Ruiz, E.M.; Niu, T.; Zerfaoui, M.; Kunnimalaiyaan, M.; Friedlander, P.L.; Abdel-Mageed, A.B.; Kandil, E. A novel gene panel for prediction of lymph-node metastasis and recurrence in patients with thyroid cancer. Surgery 2020, 167, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-L.; Kim, S.-K.; Jeon, S.; Jung, C.-K.; Kim, Y.-S. MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers 2021, 13, 632. [Google Scholar] [CrossRef] [PubMed]
- Hummel, R.; Hussey, D.; Haier, J. MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur. J. Cancer 2010, 46, 298–311. [Google Scholar] [CrossRef]
- Jiang, P.; Rao, E.Y.; Meng, N.; Zhao, Y.; Wang, J.J. MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells. Radiat. Oncol. 2010, 5, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Kang, C.; Wang, P.; Cao, Y.; Lv, Z.; Yu, S.; Wang, G.; Zhang, A.; Jia, Z.; Han, L.; et al. MicroRNA-221 and -222 Regulate Radiation Sensitivity by Targeting the PTEN Pathway. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 240–248. [Google Scholar] [CrossRef]
- Yang, Y.-P.; Chien, Y.; Chiou, G.-Y.; Cherng, J.-Y.; Wang, M.-L.; Lo, W.-L.; Chang, Y.-L.; Huang, P.-I.; Chen, Y.-W.; Shih, Y.-H.; et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 2012, 33, 1462–1476. [Google Scholar] [CrossRef] [PubMed]
- Takakura, S.; Mitsutake, N.; Nakashima, M.; Namba, H.; Saenko, V.A.; Rogounovitch, T.I.; Nakazawa, Y.; Hayashi, T.; Ohtsuru, A.; Yamashita, S. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 2008, 99, 1147–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Zhang, L.; Kebebew, E. MiR-20a Is Upregulated in Anaplastic Thyroid Cancer and Targets LIMK1. PLoS ONE 2014, 9, e96103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Wang, S.; Chen, Z.; Huv, S.; Huang, K.; Huang, B.; Du, J.; Huang, C.; Peng, L.; Jian, Z.; et al. MiR-204 regulates HMGA2 expression and inhibits cell proliferation in human thyroid cancer. Cancer Biomarkers 2015, 15, 535–542. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Li, X.; Ma, J.; Shi, C.; Zhu, H.; Xi, Q.; Zhang, J.; Zhao, X.; Gu, M. miR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem. Biophys. Res. Commun. 2015, 457, 621–626. [Google Scholar] [CrossRef]
- Deng, X.; Wu, B.; Xiaoping, Z.; Kang, J.; Xie, J.; Zhang, X.; Fan, Y. MiR-146b-5p Promotes Metastasis and Induces Epithelial-Mesenchymal Transition in Thyroid Cancer by Targeting ZNRF3. Cell. Physiol. Biochem. 2015, 35, 71–82. [Google Scholar] [CrossRef]
- Chou, C.-K.; Chi, S.-Y.; Huang, C.-H.; Chou, F.-F.; Huang, C.-C.; Liu, R.-T.; Kang, H.-Y. IRAK1, a Target of miR-146b, Reduces Cell Aggressiveness of Human Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2016, 101, 4357–4366. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Li, H.; Wang, J.; Sun, C. miR-146a and miR-146b in the diagnosis and prognosis of papillary thyroid carcinoma. Oncol. Rep. 2017, 38, 2735–2740. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.-K.; Liu, R.-T.; Kang, H.-Y. MicroRNA-146b: A Novel Biomarker and Therapeutic Target for Human Papillary Thyroid Cancer. Int. J. Mol. Sci. 2017, 18, 636. [Google Scholar] [CrossRef]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, L.; Wang, A.; Tang, W.; Zhao, Y.; Zhao, H.; Teschendorff, A.E. dbDEMC 2.0: Updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res. 2017, 45, D812–D818. [Google Scholar] [CrossRef]
- Toraih, E.A.; Mohammed, E.A.; Farrag, S.; Ramsis, N.; Hosny, S. Pilot Study of Serum MicroRNA-21 as a Diagnostic and Prognostic Biomarker in Egyptian Breast Cancer Patients. Mol. Diagn. Ther. 2015, 19, 179–190. [Google Scholar] [CrossRef]
- Fawzy, M.S.; Toraih, E.A.; Hamed, E.O.; Hussein, M.H.; Ismail, H. Association of MIR-499a expression and seed region variant (rs3746444) with cardiovascular disease in Egyptian patients. Acta Cardiol. 2017, 73, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Pamedytyte, D.; Leipute, E.; Zilaitiene, B.; Sarauskas, V.; Dauksiene, D.; Dauksa, A.; Zvirbliene, A. Different stability of miRNAs and endogenous control genes in archival specimens of papillary thyroid carcinoma. Mol. Med. 2020, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Toraih, E.; Fawzy, M.S.; Mohammed, E.A.; Hussein, M.H.; El-Labban, M.M. MicroRNA-196a2 Biomarker and Targetome Network Analysis in Solid Tumors. Mol. Diagn. Ther. 2016, 20, 559–577. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.A.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Muller, M.J. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Delong, E.R.; Delong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837. [Google Scholar] [CrossRef]
- Zamora, J.; Abraira, V.; Muriel, A.; Khan, K.; Coomarasamy, A. Meta-DiSc: A software for meta-analysis of test accuracy data. BMC Med. Res. Methodol. 2006, 6, 31. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Yan, L.; Qi, Q.; Peng, X.; Edge, S.B.; Young, J.; Yao, S.; Liu, S.; Otsuji, E.; Takabe, K. Novel MicroRNA-Based Risk Score Identified by Integrated Analyses to Predict Metastasis and Poor Prognosis in Breast Cancer. Ann. Surg. Oncol. 2018, 25, 4037–4046. [Google Scholar] [CrossRef]
- Sana, J.; Radova, L.; Lakomy, R.; Kren, L.; Fadrus, P.; Smrcka, M.; Besse, A.; Nekvindova, J.; Hermanova, M.; Jancalek, R.; et al. Risk Score based on microRNA expression signature is independent prognostic classifier of glioblastoma patients. Carcinogenesis 2014, 35, 2756–2762. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hu, Y.; Zhao, B.; Su, Y. Predictive validity of the ACS-NSQIP surgical risk calculator in geriatric patients undergoing lumbar surgery. Medicine 2017, 96, e8416. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Altman, D.G. Diagnostic tests 4: Likelihood ratios. BMJ 2004, 329, 168–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sand, M.; Skrygan, M.; Sand, D.; Georgas, D.; Gambichler, T.; Hahn, S.; Altmeyer, P.; Bechara, F.G. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2012, 351, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Feilotter, H.E.; Paré, G.C.; Zhang, X.; Pemberton, J.G.; Garady, C.; Lai, D.; Yang, X.; Tron, V.A. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma. Am. J. Pathol. 2010, 176, 2520–2529. [Google Scholar] [CrossRef]
- Chang, H.; Kim, N.; Park, J.H.; Nam, R.H.; Choi, Y.J.; Lee, H.S.; Yoon, H.; Shin, C.M.; Park, Y.S.; Kim, J.M.; et al. Different MicroRNA Expression Levels in Gastric Cancer Depending on Helicobacter pylori Infection. Gut Liver 2015, 9, 188–196. [Google Scholar] [CrossRef]
- Avissar-Whiting, M.; Christensen, B.C.; Kelsey, K.T.; Marsit, C.J. MicroRNA Expression Ratio Is Predictive of Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2009, 15, 2850–2855. [Google Scholar] [CrossRef] [Green Version]
- Saydam, O.; Senol, O.; Würdinger, T.; Mizrak, A.; Ozdener, G.B.; Stemmer-Rachamimov, A.O.; Yi, M.; Stephens, R.M.; Krichevsky, A.M.; Saydam, N.; et al. miRNA-7 Attenuation in Schwannoma Tumors Stimulates Growth by Upregulating Three Oncogenic Signaling Pathways. Cancer Res. 2011, 71, 852–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.-X.; Chang, Y.; Meng, F.-Y.; Wang, M.-Y.; Xie, Q.-H.; Tang, F.; Li, P.-Y.; Song, Y.-H.; Lin, J.-S. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene 2012, 31, 3357–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.-X.; Song, W.; Chen, Z.-H.; Wei, J.-H.; Liao, Y.; Lei, J.; Hu, M.; Chen, G.-Z.; Liao, B.; Lu, J.; et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: A microRNA expression analysis. Lancet Oncol. 2013, 14, 1295–1306. [Google Scholar] [CrossRef]
- Plieskatt, J.L.; Rinaldi, G.; Feng, Y.; Peng, J.; Yonglitthipagon, P.; Easley, S.; Laha, T.; Pairojkul, C.; Bhudhisawasdi, V.; Sripa, B.; et al. Distinct miRNA signatures associate with subtypes of cholangiocarcinoma from infection with the tumourigenic liver fluke Opisthorchis viverrini. J. Hepatol. 2014, 61, 850–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lionetti, M.; Biasiolo, M.; Agnelli, L.; Todoerti, K.; Mosca, L.; Fabris, S.; Sales, G.; Deliliers, G.L.; Bicciato, S.; Lombardi, L.; et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 2009, 114, e20–e26. [Google Scholar] [CrossRef] [Green Version]
- Arribas, A.J.; Campos-Martín, Y.; Gómez-Abad, C.; Algara, P.; Sanchez-Beato, M.; Rodriguez-Pinilla, M.S.; Montes-Moreno, S.; Martinez, N.; Alves-Ferreira, J.; Piris, M.A.; et al. Nodal marginal zone lymphoma: Gene expression and miRNA profiling identify diagnostic markers and potential therapeutic targets. Blood 2012, 119, e9–e21. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Guo, S.; Zhang, Y.; Zhao, Y.; Li, X.; Jia, Y.; Xu, Y.; Ma, B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell. Signal. 2020, 65, 109422. [Google Scholar] [CrossRef]
- Lu, M.; Qin, X.; Zhou, Y.; Li, G.; Liu, Z.; Yue, H.; Geng, X. LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomed. Pharmacother. 2020, 130, 110566. [Google Scholar] [CrossRef]
- Tang, J.; Li, Z.; Zhu, Q.; Wen, W.; Wang, J.; Xu, J.; Wu, W.; Zhu, Y.; Xu, H.; Chen, L. miR-204-5p regulates cell proliferation, invasion, and apoptosis by targeting IL-11 in esophageal squamous cell carcinoma. J. Cell. Physiol. 2020, 235, 3043–3055. [Google Scholar] [CrossRef]
- Gao, H.; Wang, T.; Zhang, P.; Shang, M.; Gao, Z.; Yang, F.; Liu, R. Linc-ROR regulates apoptosis in esophageal squamous cell carcinoma via modulation of p53 ubiquitination by targeting miR-204-5p/MDM2. J. Cell. Physiol. 2020, 235, 2325–2335. [Google Scholar] [CrossRef]
- Tan, X.; Zhou, C.; Lai, Y.-F.; Liang, Y. Circ_0001971 regulates oral squamous cell carcinoma progression and chemosensitivity by targeting miR-194/miR-204 in vitro and in vivo. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2470–2481. [Google Scholar] [CrossRef]
- Fang, X.; Bai, Y.; Zhang, L.; Ding, S. Silencing circSLAMF6 represses cell glycolysis, migration, and invasion by regulating the miR-204-5p/MYH9 axis in gastric cancer under hypoxia. Biosci. Rep. 2020, 40, 40. [Google Scholar] [CrossRef]
- Zhang, P.; Hou, Q.; Yue, Q. MiR-204-5p/TFAP2A feedback loop positively regulates the proliferation, migration, invasion and EMT process in cervical cancer. Cancer Biomark. 2020, 28, 381–390. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, C.D.; Zhang, C.; Dai, D.Q. DLX6-AS1/miR-204–5p/OCT1 positive feedback loop promotes tumor progression and epithelial-mesenchymal transition in gastric cancer. Gastric Cancer 2020, 23, 212–227. [Google Scholar] [CrossRef]
- Liang, W.-H.; Li, N.; Yuan, Z.-Q.; Qian, X.-L.; Wang, Z.-H. DSCAM-AS1 promotes tumor growth of breast cancer by reducing miR-204-5p and up-regulating RRM2. Mol. Carcinog. 2019, 58, 461–473. [Google Scholar] [CrossRef]
- Li, M.; Shen, Y.; Wang, Q.; Zhou, X. MiR-204-5p promotes apoptosis and inhibits migration of osteosarcoma via targeting EBF2. Biochimie 2019, 158, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Huan, C.; Xiaoxu, C.; Xifang, R. Zinc Finger Protein 521, Negatively Regulated by MicroRNA-204-5p, Promotes Proliferation, Motility and Invasion of Gastric Cancer Cells. Technol. Cancer Res. Treat. 2019, 18, 1533033819874783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Yang, J.; Wu, M.; Xiao, G. Clinical value screening, prognostic significance and key pathway identification of miR-204-5p in endometrial carcinoma: A study based on the Cancer Genome Atlas (TCGA), and bioinformatics analysis. Pathol. Res. Pr. 2019, 215, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.S.; Ryu, H.S.; Kim, N.; Kim, J.; Lee, E.; Moon, H.; Kim, K.H.; Jin, M.-S.; Kwon, N.H.; Kim, S.; et al. Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res. 2019, 79, 1520–1534. [Google Scholar] [CrossRef]
- Hu, L.; Kolibaba, H.; Zhang, S.; Cao, M.; Niu, H.; Mei, H.; Hao, Y.; Xu, Y.; Yin, Q. MicroRNA-204-5p Inhibits Ovarian Cancer Cell Proliferation by Down-Regulating USP47. Cell Transplant. 2019, 28, 51S–58S. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, Z.; Yu, S.; Nie, F.; Yan, S.; Ma, P.; Chen, Q.; Wei, C.; Fu, H.; Xu, T.; et al. Long Noncoding RNA LINC01234 Functions as a Competing Endogenous RNA to Regulate CBFB Expression by Sponging miR-204-5p in Gastric Cancer. Clin. Cancer Res. 2018, 24, 2002–2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, H.; Ge, S.; Fan, Q.; Zhou, L.; Li, H.; Bai, M.; Ning, T.; Liu, R.; Wang, X.; et al. Effects of miR-138-5p and miR-204-5p on the migration and proliferation of gastric cancer cells by targeting EGFR. Oncol. Rep. 2018, 39, 2624–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Martínez, M.; Benito-Jardón, L.; Alonso, L.; Koetz-Ploch, L.; Hernando, E.; Teixidó, J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res. 2018, 78, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Toda, H.; Kurozumi, S.; Kijima, Y.; Idichi, T.; Shinden, Y.; Yamada, Y.; Arai, T.; Maemura, K.; Fujii, T.; Horiguchi, J.; et al. Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: Antitumor miR-204–5p targets AP1S. J. Hum. Genet. 2018, 63, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Lin, J.-F.; Tsai, T.-F.; Chou, K.-Y.; Chen, H.-E.; Hwang, T.I.-S. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J. Surg. 2017, 40, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.-H.; Tang, W.; Zhang, D.X.; Tan, Z.; Guo, W.-L.; Zhao, N.; Pang, S.-M.; Dang, Y.-W.; Rong, M.-H.; Cao, J. Promising significance of the association of miR-204-5p expression with clinicopathological features of hepatocellular carcinoma. Medicine 2017, 96, e7545. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Wen, L.; Zheng, H.; Jian, Z.; Deng, W. miR-204-5p targeting SIRT1 regulates hepatocellular carcinoma progression. Cell Biochem. Funct. 2016, 34, 505–510. [Google Scholar] [CrossRef]
- Zeng, J.; Wei, M.; Shi, R.; Cai, C.; Liu, X.; Li, T.; Ma, W. MiR-204-5p/Six1 feedback loop promotes epithelial–mesenchymal transition in breast cancer. Tumor Biol. 2016, 37, 2729–2735. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, B.; Wang, W.; Fei, B.; Quan, C.; Zhang, J.; Song, M.; Bian, Z.; Wang, Q.; Ni, S.; et al. miR-204–5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating RAB22A. Clin. Cancer Res. 2014, 20, 6187–6199. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Wang, H.H.; Tian, F.J.; He, X.Y.; Qiu, M.T.; Wang, J.Y.; Zhang, H.J.; Wang, L.H.; Wan, X.P. A TrkB-STAT3-miR-204–5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. Mol. Cancer 2013, 12, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, B.; Ding, M.; Lu, S.; Zhou, H.; Sun, D.; Wu, G.; Gan, X. C1QTNF1-AS1 regulates the occurrence and development of hepatocellular carcinoma by regulating miR-221–3p/SOCS3. Hepatol. Int. 2019, 13, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cui, H.; Wang, X. Downregulation of EIF5A2 by miR-221-3p inhibits cell proliferation, promotes cell cycle arrest and apoptosis in medulloblastoma cells. Biosci. Biotechnol. Biochem. 2019, 83, 400–408. [Google Scholar] [CrossRef]
- Wu, X.G.; Zhou, C.F.; Zhang, Y.M.; Yan, R.M.; Wei, W.F.; Chen, X.J.; Yi, H.Y.; Liang, L.J.; Fan, L.S.; Liang, L.; et al. Cancer-derived exosomal miR-221–3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 2019, 22, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Zhang, B.; Li, J. miR-221-3p promotes the cell growth of non-small cell lung cancer by targeting p27. Mol. Med. Rep. 2019, 20, 604–612. [Google Scholar] [CrossRef]
- Zhou, C.F.; Ma, J.; Huang, L.; Yi, H.Y.; Zhang, Y.M.; Wu, X.G.; Yan, R.M.; Liang, L.; Zhong, M.; Yu, Y.H.; et al. Cervical squamous cell carcinoma-secreted exosomal miR-221–3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH. Oncogene 2019, 38, 1256–1268. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Ren, X.; Zhang, Y.; Fu, X.; Li, Y.; Peng, Y.; Xiao, Q.; Li, T.; Ouyang, C.; Hu, Y.; et al. MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem. Biophys. Res. Commun. 2018, 497, 1162–1170. [Google Scholar] [CrossRef]
- Li, F.; Xu, J.-W.; Wang, L.; Liu, H.; Yan, Y.; Hu, S.-Y. MicroRNA-221-3p is up-regulated and serves as a potential biomarker in pancreatic cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhang, Y.; Jin, N.; Li, Y.; Wu, S.; Xu, L. MicroRNA-221-3p Plays an Oncogenic Role in Gastric Carcinoma by Inhibiting PTEN Expression. Oncol. Res. 2017, 25, 523–536. [Google Scholar] [CrossRef]
- Wei, W.F.; Zhou, C.F.; Wu, X.G.; He, L.N.; Wu, L.F.; Chen, X.J.; Yan, R.M.; Zhong, M.; Yu, Y.H.; Liang, L.; et al. MicroRNA-221–3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS. Cell Death Dis. 2017, 8, 3220. [Google Scholar] [CrossRef] [Green Version]
- Ergun, S.; Tayeb, T.S.; Arslan, A.; Temiz, E.; Arman, K.; Safdar, M.; Dağlı, H.; Korkmaz, M.; Nacarkahya, G.; Kırkbeş, S.; et al. The investigation of miR-221-3p and PAK1 gene expressions in breast cancer cell lines. Gene 2015, 555, 377–381. [Google Scholar] [CrossRef]
- Chen, W.; Li, X. MiR-222-3p Promotes Cell Proliferation and Inhibits Apoptosis by Targeting PUMA (BBC3) in Non-Small Cell Lung Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820922558. [Google Scholar] [CrossRef]
- Lyu, J.; Zhu, Y.; Zhang, Q. An increased level of MiR-222-3p is associated with TMP2 suppression, ERK activation and is associated with metastasis and a poor prognosis in renal clear cell carcinoma. Cancer Biomark. 2020, 28, 141–149. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.; Cui, Z.; Chen, H.; Yang, L.; Zhao, J.; Luo, F.; Man, S.; Zhao, J.; Jin, L. MicroRNA-222-3p participates in the development of oral squamous cell carcinoma by targeting CDKN1B. J. Oral Pathol. Med. 2020, 49, 621–629. [Google Scholar] [CrossRef]
- Zhao, L.; Quan, J.; Li, Z.; Pan, X.; Wang, J.; Xu, J.; Xu, W.; Guan, X.; Li, H.; Yang, S.; et al. MicroRNA-222-3p promotes tumor cell migration and invasion and inhibits apoptosis, and is correlated with an unfavorable prognosis of patients with renal cell carcinoma. Int. J. Mol. Med. 2019, 43, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Wang, H.; Ji, M. Overexpression of miR-222-3p Promotes the Proliferation and Inhibits the Apoptosis of Diffuse Large B-Cell Lymphoma Cells via Suppressing PPP2R2A. Technol. Cancer Res. Treat. 2019, 18, 1533033819892256. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Ma, C.; Zhou, T.; Dong, X.; Luo, Q.; Geng, L.; Ding, L.; Zhang, Y.; Zhang, L.; Li, N.; et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol. Cancer 2017, 16, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Li, Y.; Alvero, A.; Li, J.; Wu, Q.; Xiao, Q.; Peng, Y.; Hu, Y.; Li, X.; Yan, W.; et al. MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget 2016, 7, 80633–80654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, X.; Wu, Q.; Wu, X.; Zhu, Q.; Wang, X.; Jiang, L.; Chen, X.; Wang, X. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 2016, 7, 43076–43087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Che, Q.; Qiu, H.; Bao, W.; Chen, X.; Lu, W.; Li, B.; Wan, X. Elevated MiR-222-3p Promotes Proliferation and Invasion of Endometrial Carcinoma via Targeting ERα. PLoS ONE 2014, 9, e87563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemoeller, O.M.; Niyazi, M.; Corradini, S.; Zehentmayr, F.; Li, M.; Lauber, K.; Belka, C. MicroRNA expression profiles in human cancer cells after ionizing radiation. Radiat. Oncol. 2011, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, R.; Shen, X.; Zhu, G.; Li, B.; Xing, M. The Genetic Duet of BRAF V600E and TERT Promoter Mutations Robustly Predicts Loss of Radioiodine Avidity in Recurrent Papillary Thyroid Cancer. J. Nucl. Med. 2020, 61, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Mardente, S.; Mari, E.; Consorti, F.; Di Gioia, C.; Negri, R.; Etna, M.P.; Zicari, A.; Antonaci, A. HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol. Rep. 2012, 28, 2285–2289. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Jazdzewski, K.; Li, W.; Liyanarachchi, S.; Nagy, R.; Volinia, S.; Calin, G.; Liu, C.-G.; Franssila, K.; Suster, S.; et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 2005, 102, 19075–19080. [Google Scholar] [CrossRef] [Green Version]
- Pallante, P.; Visone, R.; Ferracin, M.; Ferraro, A.; Berlingieri, M.T.; Troncone, G.; Chiappetta, G.; Liu, C.G.; Santoro, M.; Negrini, M.; et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 2006, 13, 497–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikiforova, M.N.; Tseng, G.C.; Steward, D.; Diorio, D.; Nikiforov, Y.E. MicroRNA Expression Profiling of Thyroid Tumors: Biological Significance and Diagnostic Utility. J. Clin. Endocrinol. Metab. 2008, 93, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Kitabayashi, N.; Zhou, X.K.; Fahey, T.J.; Scognamiglio, T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol. 2008, 21, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettmer, M.; Perren, A.; Moch, H.; Komminoth, P.; Nikiforov, Y.E.; Nikiforova, M.N. Comprehensive MicroRNA Expression Profiling Identifies Novel Markers in Follicular Variant of Papillary Thyroid Carcinoma. Thyroid 2013, 23, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Visone, R.; Russo, L.; Pallante, P.; De Martino, I.; Ferraro, A.; Leone, V.; Borbone, E.; Petrocca, F.; Alder, H.; Croce, C.M.; et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr. Relat. Cancer 2007, 14, 791–798. [Google Scholar] [CrossRef]
- Tetzlaff, M.T.; Liu, A.; Xu, X.; Master, S.R.; Baldwin, D.A.; Tobias, J.W.; Livolsi, V.A.; Baloch, Z.W. Differential Expression of miRNAs in Papillary Thyroid Carcinoma Compared to Multinodular Goiter Using Formalin Fixed Paraffin Embedded Tissues. Endocr. Pathol. 2007, 18, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Agretti, P.; Ferrarini, E.; Rago, T.; Candelieri, A.; De Marco, G.; Dimida, A.; Niccolai, F.; Molinaro, A.; Di Coscio, G.; Pinchera, A.; et al. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. Eur. J. Endocrinol. 2012, 167, 393–400. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Chiosea, S.I.; Nikiforov, Y.E. MicroRNA Expression Profiles in Thyroid Tumors. Endocr. Pathol. 2009, 20, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Rosignolo, F.; Memeo, L.; Monzani, F.; Colarossi, C.; Pecce, V.; Verrienti, A.; Durante, C.; Grani, G.; Lamartina, L.; Forte, S.; et al. MicroRNA-based molecular classification of papillary thyroid carcinoma. Int. J. Oncol. 2017, 50, 1767–1777. [Google Scholar] [CrossRef] [Green Version]
- Vincenti, S.; Brillante, N.; Lanza, V.; Bozzoni, I.; Presutti, C.; Chiani, F.; Etna, M.P.; Negri, R. HUVEC Respond to Radiation by Inducing the Expression of Pro-angiogenic MicroRNAs. Radiat. Res. 2011, 175, 535–546. [Google Scholar] [CrossRef]
- Cui, Z.-H.; Shen, S.-Q.; Chen, Z.-B.; Hu, C. Growth inhibition of hepatocellular carcinoma tumor endothelial cells by miR-204-3p and underlying mechanism. World J. Gastroenterol. 2014, 20, 5493–5504. [Google Scholar] [CrossRef]
- Chen, P.-H.; Chang, C.-K.; Shih, C.-M.; Cheng, C.-H.; Lin, C.-W.; Lee, C.-C.; Liu, A.-J.; Ho, K.-H.; Chen, K.-C. The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death. Neuropharmacology 2016, 110, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zhang, Y.; Sun, Y.; Chen, J.; Chang, C.; Wang, X.; Yeh, S. ERβ-Mediated Alteration of circATP2B1 and miR-204-3p Signaling Promotes Invasion of Clear Cell Renal Cell Carcinoma. Cancer Res. 2018, 78, 2550–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhong, W.; Xu, Y.; Yu, B.; Liu, H. Silencing of lncRNA LINC00514 inhibits the malignant behaviors of papillary thyroid cancer through miR-204–3p/CDC23 axis. Biochem. Biophys. Res. Commun. 2019, 508, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cui, C.; Chen, J.; Hu, Z.; Wang, Y.; Hu, D. Long non-coding RNA UCA1 promotes papillary thyroid cancer cell proliferation via miR-204-mediated BRD4 activation. Mol. Med. Rep. 2018, 18, 3059–3067. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.S.; Taylor, J.; Valentine, H.R.; Irlam, J.J.; Eustace, A.; Hoskin, P.; Miller, C.; West, C. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation. Br. J. Cancer 2012, 107, 684–694. [Google Scholar] [CrossRef] [Green Version]
Patient Characteristics | Levels | Total (N = 68) | No RAI (N = 34) | RAI (N = 34) | p-Value |
---|---|---|---|---|---|
Demographic data | |||||
Age, years | Median (IQR) | 27 (22–43) | 29 (24–45) | 23 (22–41.5) | 0.09 |
<55 y | 55 (80.9) | 25 (73.5) | 30 (88.2) | 0.21 | |
≥55 y | 13 (19.1) | 9 (26.5) | 4 (11.8) | ||
Sex | Female | 49 (72.1) | 23 (67.6) | 26 (76.5) | 0.59 |
Male | 19 (27.9) | 11 (32.4) | 8 (23.5) | ||
BMI, Kg/m2 | Mean ± SD | 26.8 ± 5.3 | 25.5 ± 1.39 | 27.8 ± 6.9 | 0.06 |
Pathological assessment | |||||
Laterality | Unilateral | 47 (69.1) | 27 (79.4) | 20 (58.8) | 0.11 |
Bilateral | 21 (30.9) | 7 (20.6) | 14 (41.2) | ||
Histological variant | Conventional | 30 (44.1) | 10 (29.4) | 20 (58.8) | 0.18 |
Micropapillary | 20 (29.4) | 16 (47.1) | 4 (11.8) | ||
Follicular | 7 (10.3) | 3 (8.8) | 4 (11.8) | ||
Follicular + Oncocytic | 9 (13.2) | 3 (8.8) | 6 (17.6) | ||
Oncocytic | 1 (1.5) | 1 (2.9) | 0 (0) | ||
Tall cell | 30 (44.1) | 10 (29.4) | 20 (58.8) | ||
Pathology Stage | Stage Ia | 47 (69.1) | 25 (73.5) | 22 (64.7) | 0.18 |
Stage II | 13 (19.1) | 5 (14.7) | 8 (23.5) | ||
Stage III | 3 (4.4) | 3 (8.8) | 0 (0) | ||
Stage IVA | 3 (4.4) | 1 (2.9) | 2 (5.9) | ||
Stage IVB | 2 (2.9) | 0 (0) | 2 (5.9) | ||
Max Tumor size, cm | Median (IQR) | 2.5 (2.0–3.5) | 2.5 (2.0–3.0) | 2.7 (1.6–4.6) | 0.71 |
T stage | T1a | 11 (16.2) | 5 (14.7) | 6 (17.6) | 0.22 |
T1b | 23 (33.8) | 15 (44.1) | 8 (23.5) | ||
T2 | 16 (23.5) | 6 (17.6) | 10 (29.4) | ||
T3a | 10 (14.7) | 6 (17.6) | 4 (11.8) | ||
T3b | 8 (11.8) | 2 (5.9) | 6 (17.6) | ||
N stage | N0 | 36 (52.9) | 20 (58.8) | 16 (47.1) | 0.46 |
N1 | 32 (47.1) | 14 (41.2) | 18 (52.9) | ||
M stage | M0 | 54 (79.4) | 30 (88.2) | 24 (70.6) | 0.13 |
M1 | 14 (20.6) | 4 (11.8) | 10 (29.4) | ||
Focality | Unifocal | 29 (42.6) | 15 (44.1) | 14 (41.2) | 0.81 |
Multifocal | 39 (57.4) | 19 (55.9) | 20 (58.8) | ||
ETE | Negative | 68 (100) | 34 (100) | 34 (100) | NA |
LVI | Negative | 68 (100) | 34 (100) | 34 (100) | NA |
Perineural invasion | Negative | 64 (94.1) | 30 (88.2) | 34 (100) | 0.11 |
Positive | 4 (5.9) | 4 (11.8) | 0 (0) | ||
Extranodal extension | Negative | 66 (97.1) | 34 (100) | 32 (94.1) | 0.49 |
Positive | 2 (2.9) | 0 (0) | 2 (5.9) | ||
Intervention | |||||
Thyroidectomy | Unilateral | 12 (17.6) | 8 (23.5) | 4 (11.8) | 0.34 |
Total/subtotal | 56 (82.4) | 26 (76.5) | 30 (88.2) | ||
Neck dissection | Negative | 15 (22.1) | 9 (26.5) | 6 (17.6) | 0.56 |
Positive | 53 (77.9) | 25 (73.5) | 28 (82.4) | ||
Follow-up | |||||
Progression | Negative | 33 (48.5) | 19 (55.9) | 14 (41.2) | 0.33 |
Positive | 35 (51.5) | 15 (44.1) | 20 (58.8) | ||
Mortality | Survived | 63 (92.6) | 31 (91.2) | 32 (94.1) | 0.64 |
Died | 5 (7.4) | 3 (8.8) | 2 (5.9) |
Patient Characteristics | Levels | Indolent (N = 19) | Progression (N = 15) | p-Value | Indolent (N = 14) | Progression (N = 20) | p-Value |
---|---|---|---|---|---|---|---|
Demographic data | |||||||
Age, years | <55 y | 13 (68.4) | 12 (80) | 0.69 | 14 (100) | 16 (80) | 0.12 |
≥55 y | 6 (31.6) | 3 (20) | 0 (0) | 4 (20) | |||
Sex | Female | 15 (78.9) | 8 (53.3) | 0.45 | 12 (85.7) | 14 (70) | 0.42 |
Male | 4 (21.1) | 7 (46.7) | 2 (14.3) | 6 (30) | |||
Pathological assessment | |||||||
Laterality | Unilateral | 15 (78.9) | 12 (80) | 0.94 | 6 (42.9) | 14 (70) | 0.16 |
Bilateral | 4 (21.1) | 3 (20) | 8 (57.1) | 6 (30) | |||
Pathology Stage | Stage I | 16 (84.2) | 9 (60) | 0.047 | 10 (71.4) | 12 (60) | 0.35 |
Stage II | 0 (0) | 5 (33.3) | 4 (28.6) | 4 (20) | |||
Stage III | 2 (10.5) | 1 (6.7) | - | - | |||
Stage IVA | 1 (5.3) | 0 (0) | 0 (0) | 2 (10) | |||
Stage IVB | - | - | 0 (0) | 2 (10) | |||
Max Tumor size, cm | Median (IQR) | 2 (2–3.5) | 2.5 (2–3.0) | 1.00 | 2.5 (1.8–5.0) | 3.0 (1.5–3.5) | 0.74 |
T stage | T1a | 3 (15.8) | 2 (13.3) | 0.30 | 2 (14.3) | 4 (20) | 0.59 |
T1b | 10 (52.6) | 5 (33.3) | 2 (14.3) | 6 (30) | |||
T2 | 2 (10.5) | 4 (26.7) | 6 (42.9) | 4 (20) | |||
T3a | 4 (21.1) | 2 (13.3) | 2 (14.3) | 2 (10) | |||
T3b | 0 (0) | 2 (13.3) | 2 (14.3) | 4 (20) | |||
N stage | N0 | 12 (63.2) | 8 (53.3) | 0.72 | 8 (57.1) | 8 (40) | 0.48 |
N1 | 7 (36.8) | 7 (46.7) | 6 (42.9) | 12 (60) | |||
M stage | M0 | 19 (100) | 11 (73.3) | 0.029 | 10 (71.4) | 14 (70) | 0.61 |
M1 | 0 (0) | 4 (26.7) | 4 (28.6) | 6 (30) | |||
Focality | Unifocal | 12 (63.2) | 3 (20) | 0.017 | 4 (28.6) | 10 (50) | 0.29 |
Multifocal | 7 (36.8) | 12 (80) | 10 (71.4) | 10 (50) | |||
ATA risk score | Median (IQR) | 10 (10–10) | 10 (10–40) | 0.08 | 20 (1040) | 10 (10–40) | 0.90 |
Intervention | |||||||
Thyroidectomy | Unilateral | 2 (9.1) | 6 (50) | 0.044 | 2 (14.3) | 2 (10) | 0.55 |
Total/subtotal | 17 (89.5) | 9 (60) | 12 (85.7) | 18 (90) | |||
Neck dissection | Negative | 6 (31.6) | 3 (20) | 0.69 | 2 (14.3) | 4 (20) | 0.66 |
Positive | 13 (68.4) | 12 (80) | 12 (85.7) | 16 (80) | |||
Follow-up | |||||||
Mortality | Survived | 19 (100) | 12 (80) | 0.07 | 14 (100) | 18 (90) | 0.50 |
Died | 0 (0) | 3 (20) | 0 (0) | 2 (10) | |||
Metastasis-free survival, months | Median (IQR) | 56 (40–81) | 10 (1–64) | 0.013 | 7.0 (0.75–40.7) | 4.0 (0.01–7.0) | 0.69 |
Progression-free survival, months | Median (IQR) | 53 (18–80) | 8 (4–16) | <0.001 | 6.0 (1.0–7.0) | 1.0 (0.75–5.5) | 0.12 |
Overall survival, months | Median (IQR) | 68 (41.5–82.5) | 64 (6–75)0.53 | 0.31 | 7.0 (1.0–40.7) | 70 (3.0–48.0) | 0.21 |
Characteristics | Levels | miR-204-5p | miR-221-3p | miR-222-3p |
---|---|---|---|---|
Demographic data | ||||
Age, years | ≥55 y vs. <55 y | 0.57 | 0.67 | 0.77 |
Sex | Male vs. female | 0.87 | 0.53 | 0.22 |
Pathological assessment | ||||
Laterality | Bilateral vs. unilateral | 0.92 | 0.93 | 0.55 |
Pathology Stage | Stage III/IV vs. I/II | 0.73 | 0.82 | 0.44 |
T stage | T3 vs. T1/2 | 0.36 | 0.57 | 0.36 |
Lymph node metastasis | N1 vs N0 | 0.21 | 0.036 | 0.017 |
Distant metastasis | M1 vs. M0 | 0.71 | 0.80 | 0.32 |
Focality | Multi vs. unifocal | 0.037 | 0.91 | 0.77 |
Intervention | ||||
Thyroidectomy | Total/subtotal vs. lobectomy | 0.21 | 0.46 | 0.99 |
Neck dissection | Positive vs. negative | 0.53 | 0.65 | 0.35 |
Radioactive iodine | Positive vs. negative | 0.50 | 0.33 | 0.13 |
Group | AUC | p-Value | Cutoff | Sensitivity | Specificity | +LR | −LR | +PV | −PV | Cost |
---|---|---|---|---|---|---|---|---|---|---|
miR-204 | ||||||||||
Overall | 0.856 (0.74–0.93) | <0.001 | ≤−1.15 | 71.4 (53.7–85.4) | 90.9 (75.7–98.1) | 7.9 | 0.30 | 89.3 | 75 | 0.191 |
RAI | 0.918 (0.75–0.98) | <0.001 | ≤−1 | 85 (62.1–96.8) | 92.9 (66.1–99.8) | 11.9 | 0.20 | 94.4 | 81.2 | 0.118 |
Non-RAI | 0.821 (0.71–0.90) | <0.001 | ≤−1.4 | 66.7 (47.2–82.7) | 89.5 (75.2–97.1) | 6.33 | 0.37 | 83.3 | 77.3 | 0.206 |
miR-221 | ||||||||||
Overall | 0.930 (0.82–0.97) | <0.001 | >1.03 | 88.6 (73.3–96.8) | 97 (84.2–99.9) | 29.2 | 0.10 | 96.9 | 88.9 | 0.074 |
RAI | 0.979 (0.87–1.00) | <0.001 | >1.03 | 95 (75.1–99.9) | 100 (76.8–100.0) | NA | 0.10 | 100 | 93.3 | 0.029 |
Non-RAI | 0.856 (0.75–0.93) | <0.001 | >1.0 | 80 (61.4–92.3) | 94.7 (82.3–99.4) | 15.2 | 0.21 | 92.3 | 85.7 | 0.118 |
miR-222 | ||||||||||
Overall | 0.854 (0.74–0.92) | <0.001 | >1.2 | 82.9 (66.4–93.4) | 81.8 (64.5–93.0) | 4.6 | 0.2 0 | 82.9 | 81.8 | 0.176 |
RAI | 0.838 (0.66–0.94) | <0.001 | >1.2 | 85 (62.1–96.8) | 78.6 (49.2–95.3) | 4.0 | 0.20 | 85 | 78.6 | 0.176 |
Non-RAI | 0.860 (0.75–0.93) | <0.001 | >1.25 | 73.3 (54.1–87.7) | 94.7 (82.3–99.4) | 13.9 | 0.28 | 91.7 | 81.8 | 0.147 |
ATA score | ||||||||||
Overall | 0.613 (0.49–0.73) | 0.06 | >8 | 97 (85.1–99.9) | 18.2 (7.0–35.5) | 1.19 | 0.16 | 55.7 | 85.7 | 0.412 |
RAI | 0.514 (0.34–0.68) | 0.88 | ≤10 | 60 (36.1–80.9) | 57.1 (28.9–82.3) | 1.4 | 0.70 | 66.7 | 50.0 | 0.412 |
Non-RAI | 0.677 (0.49–0.82) | 0.012 | >8 | 93.3 (68.1–99.8) | 21 (6.1–45.6) | 1.18 | 0.30 | 48.3 | 80.0 | 0.471 |
Risk Factor | Univariate Cox Regression | Multivariate Cox Regression | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
miR-204-3p | 0.58 | 0.44–0.76 | <0.001 | 0.77 | 0.57–0.99 | 0.003 |
miR-221-5p | 1.95 | 1.48–2.56 | <0.001 | 1.68 | 1.20–2.35 | 0.002 |
miR-222-5p | 1.96 | 1.32–2.91 | 0.001 | 1.59 | 1.14–2.21 | 0.027 |
MicroRNA Risk Score | Not Have Event | Have Event | p-Value | C-Statistic | Brier Score | ||
---|---|---|---|---|---|---|---|
N (%) | Median Score (IQR) | N (%) | Median Score (IQR) | ||||
Overall analysis | |||||||
Advanced T stage | 48 (70.6%) | 0.83 (0.36–2.14) | 20 (29.4%) | 0.84 (0.46–1.71) | 0.67 | 0.532 | 0.205 |
Lymph node metastasis | 36 (52.9%) | 0.79 (0.40–1.72) | 32 (47.1%) | 0.93 (0.32–2.15) | 0.78 | 0.519 | 0.247 |
Distant metastasis | 54 (79.4%) | 0.73 (0.35–1.82) | 14 (20.6%) | 1.38 (0.77–2.25) | 0.12 | 0.632 | 0.158 |
Multifocality | 29 (42.6%) | 0.71 (0.37–1.83) | 39 (57.4%) | 0.90 (0.40–2.15) | 0.34 | 0.566 | 0.241 |
Bilateral lesion | 47 (69.1%) | 0.82 (0.39–1.94) | 21 (30.9%) | 0.85 (0.28–1.77) | 0.58 | 0.542 | 0.212 |
Recurrence | 48 (70.6%) | 0.60 (0.29–1.35) | 20 (29.4%) | 2.0 (1.23–2.44) | <0.001 | 0.820 | 0.156 |
Progression | 33 (48.5%) | 0.39 (0.24–0.71) | 35 (51.5%) | 1.87 (1.27–2.29) | <0.001 | 0.943 | 0.083 |
Mortality | 63 (92.6%) | 0.77 (0.35–1.96) | 5 (7.4%) | 1.47 (1.02–1.75) | 0.30 | 0.644 | 0.068 |
Subgroup analysis | |||||||
Advanced T stage | 26 (76.5%) | 1.51 (0.37–2.37) | 8 (23.5%) | 0.89 (0.56–1.92) | 0.41 | 0.601 | 0.177 |
Lymph node metastasis | 16 (47.1%) | 0.83 (0.56–2.22) | 18 (52.9%) | 1.83 (0.34–2.34) | 0.59 | 0.555 | 0.244 |
Distant metastasis | 24 (70.6%) | 1.12 (0.38–2.24) | 10 (29.4%) | 1.61 (0.39–2.36) | 0.75 | 0.537 | 0.207 |
Multifocality | 14 (41.2%) | 1.51 (0.37–2.02) | 20 (58.8%) | 0.96 (0.56–2.32) | 0.74 | 0.535 | 0.241 |
Bilateral lesion | 20 (58.8%) | 1.78 (0.48–2.28) | 14 (41.2%) | 0.79 (0.26–2.26) | 0.37 | 0.592 | 0.235 |
Recurrence | 26 (76.5%) | 0.77 (0.34–1.89) | 8 (23.5%) | 2.39 (2.22–2.75) | 0.001 | 0.870 | 0.126 |
Progression | 14 (41.2%) | 0.37 (0.2–0.73) | 20 (58.8%) | 2.22 (1.76–2.49) | <0.001 | 0.978 | 0.049 |
Mortality | 32 (94.1%) | 1.01 (0.38–2.28) | 2 (5.9%) | 1.57 (1.27–1.87) | 0.80 | 0.562 | 0.055 |
Cancer Type | Tumor Subtype or Cell Line | Design | Expression Status | Ref. |
---|---|---|---|---|
miR-204-5p | ||||
Melanoma | Cutaneous malignant melanoma | cancer vs. normal | down | [48] |
Melanoma | Malme-3M, SKMEL-28, and SKMEL-11 | metastatic | down | [49] |
Gastric cancer | Subtype1: Helicobacter pylori-positive cancer, Subtype2: Helicobacter pylori-negative cancer | subtype1 vs. subtype2 | down | [50] |
miR-221-3p | ||||
Head and neck cancer | N/A | cancer vs. normal | up | [51] |
Brain cancer | Schwannomas | cancer vs. normal | up | [52] |
Hepatocellular carcinoma | PHHC-3 | cancer vs. normal | up | [53] |
Colon cancer | N/A | cancer vs. normal | up | [54] |
Cholangiocarcinoma | N/A | cancer vs. normal | up | [55] |
Lymphoma | Multiple myeloma (TC5) | subtype1 vs. subtype2 | up | [56] |
Lymphoma | Nodal marginal zone lymphoma/lymphoid hyperplasia | subtype1 vs. subtype2 | up | [57] |
miR-222-3p | ||||
Cholangiocarcinoma | N/A | cancer vs. normal | up | [55] |
Lymphoma | Multiple myeloma (TC4) | subtype1 vs. subtype2 | up | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toraih, E.A.; Fawzy, M.S.; Hussein, M.H.; El-Labban, M.M.; Ruiz, E.M.L.; Attia, A.A.; Halat, S.; Moroz, K.; Errami, Y.; Zerfaoui, M.; et al. MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers 2021, 13, 4649. https://doi.org/10.3390/cancers13184649
Toraih EA, Fawzy MS, Hussein MH, El-Labban MM, Ruiz EML, Attia AA, Halat S, Moroz K, Errami Y, Zerfaoui M, et al. MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers. 2021; 13(18):4649. https://doi.org/10.3390/cancers13184649
Chicago/Turabian StyleToraih, Eman A., Manal S. Fawzy, Mohammad H. Hussein, Mohamad M. El-Labban, Emmanuelle M. L. Ruiz, Abdallah A. Attia, Shams Halat, Krzysztof Moroz, Youssef Errami, Mourad Zerfaoui, and et al. 2021. "MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis" Cancers 13, no. 18: 4649. https://doi.org/10.3390/cancers13184649