Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells
<p>Effects of Arg and Leu on the location of mTOR on LAMP2-positive lysosomal clusters, activation of mTORC1 and expression of SLC38A9 and SLC36A1 in C2C12 cells. (<b>A</b>) C2C12 cells were pretreated without serum for 15 h and without amino acids for 3 h then cultured for 10 min in a special medium (<a href="#app1-biomolecules-11-01314" class="html-app">Supplemental Table S1</a>) including the no amino acids group (−AA), the only Arg group (+Arg), and the only Leu group (+Leu). Cells were stained with anti-mTOR (A2445, Abclonal Technology, Wuhan, China) or anti-LAMP2. Scale bar: 10 µM. (<b>B</b>) Ratio of mTOR to LAMP2 (%). To assess mTOR translocation, the numbers of mTOR and LAMP2-positive spots per cell were calculated using IPP6.0 and Image J software. (<b>C</b>) Immunoblotting analysis of protein samples from (<b>A</b>) with anti-mTOR, anti-phospho-mTOR, anti-S6K, anti-phospho-S6K, anti-SLC38A9, anti-SLC36A1, or anti-β-Actin antibody. (<b>D</b>) Densitometric analysis of the immunodetection of mTOR relative to β-Actin loading control. (<b>E</b>) Densitometric analysis of the immunodetection of phospho-mTOR relative to β-Actin loading control. (<b>F</b>) Densitometric analysis of the immunodetection of p70S6K relative to β-Actin loading control. (<b>G</b>) Densitometric analysis of the immunodetection of phospho-p70S6K relative to β-Actin loading control. (<b>H</b>) Densitometric analysis of the immunodetection of SLC38A9 relative to β-Actin loading control. (<b>I</b>) Densitometric analysis of the immunodetection of SLC36A1 relative to β-Actin loading control. (<b>J</b>) The mRNA levels of SLC38A9 and SLC36A1 were analyzed by qRT-PCR. Values are the mean ± SEM; <span class="html-italic">n</span> = 3; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 2
<p>The effects of SLC38A9 or SLC36A1 overexpression and inhibition on mTOR phosphorylation in C2C12 cells. (<b>A</b>) The mRNA expression of SLC38A9 after overexpression of SLC38A9. (<b>B</b>) The mRNA expression of SLC38A9 after inhibition of SLC38A9. (<b>C</b>) The mRNA expression of SLC36A1 after overexpression of SLC36A1. (<b>D</b>) The mRNA expression of SLC36A1 after inhibition of SLC36A1. (<b>E</b>) C2C12 cells were transfected with pcDNA3.1-SLC38A9 construct or siRNA to overexpress or knockdown SLC38A9. Immunoblotting analysis of protein samples with anti-SLC38A9, anti-mTOR, anti-phospho-mTOR, or anti-β-Actin antibody. (<b>F</b>) C2C12 cells were transfected with pcDNA3.1-SLC36A1 construct or siRNA to overexpress or knockdown SLC36A1. Immunoblotting analysis of protein samples with anti-SLC36A1, anti-mTOR, anti-phospho-mTOR, or anti-β-Actin antibody. (<b>G</b>) Densitometric analysis of the immunodetection of SLC38A9, mTOR or phospho-mTOR relative to β-Actin loading control from (<b>E</b>). (<b>H</b>) Densitometric analysis of the immunodetection of SLC36A1, mTOR or phospho-mTOR relative to β-Actin loading control from (<b>F</b>). Values are the mean ± SEM; <span class="html-italic">n</span> = 3; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>SLC38A9 increases SLC36A1 expression and promotes the translocation of SLC36A1 to LAMP2-positive lysosomal clusters. (<b>A</b>) C2C12 cells were transfected with pcDNA3.1-SLC38A9 construct to overexpress SLC38A9. The mRNA level of SLC36A1 was analyzed by qRT-PCR. (<b>B</b>) C2C12 cells were transfected with siRNA to knockdown SLC38A9. The mRNA level of SLC36A1 was analyzed by qRT-PCR. (<b>C</b>) Immunoblotting analysis of protein samples from (<b>A</b>,<b>B</b>) with anti-SLC36A1 or anti-β-Actin antibody. (<b>D</b>) Densitometric analysis of the immunodetection of SLC36A1 relative to β-Actin loading control. (<b>E</b>) C2C12 cells were transfected with pcDNA3.1-SLC38A9 construct or siRNA to overexpress or knockdown SLC38A9 and stained with anti-SLC36A1 or anti-LAMP2. Scale bar: 10µM. (<b>F</b>) Ratio of SLC36A1 to LAMP2 (%). To assess SLC36A1 translocation, the numbers of SLC36A1 and LAMP2-positive spots per cell were calculated using IPP6.0 and Image J software. Values are the mean ± SEM; <span class="html-italic">n</span> = 3; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 4
<p>SLC36A1 increases SLC38A9 expression and promotes the translocation of SLC38A9 to LAMP2-positive lysosomal clusters. (<b>A</b>) C2C12 cells were transfected with pcDNA3.1-SLC36A1 construct to overexpress SLC36A1. The mRNA level of SLC38A9 was analyzed by qRT-PCR. (<b>B</b>) C2C12 cells were transfected with siRNA to knockdown SLC36A1. The mRNA level of SLC38A9 was analyzed by qRT-PCR. (<b>C</b>) Immunoblotting analysis of protein samples from (<b>A</b>,<b>B</b>) with anti-SLC38A9 or anti-β-Actin antibody. (<b>D</b>) Densitometric analysis of the immunodetection of SLC38A9 relative to β-Actin loading control. (<b>E</b>) C2C12 cells were transfected with pcDNA3.1-SLC36A1 construct or siRNA to overexpress or knockdown SLC36A1 and stained with anti-SLC38A9 or anti-LAMP2. Scale bar: 10µM. (<b>F</b>) Ratio of SLC38A9 to LAMP2 (%). To assess SLC38A9 translocation, the numbers of SLC38A9 and LAMP2-positive spots per cell were calculated using IPP6.0 and Image J software. Values are the mean ± SEM; <span class="html-italic">n</span> = 3; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>SLC38A9 and SLC36A1 interact. (<b>A</b>) SLC38A9 was associated with SLC36A1 at the endogenous level as detected by Co-IP: anti-SLC36A1 (sc-161150, Santa Cruz) was used for pull-down, and anti-SLC38A9 (ab81687, Abcam) and anti-SLC36A1 (sc-368553, Santa Cruz) were used for detection. (<b>B</b>) Interaction of SLC38A9 and SLC36A1: C2C12 cells were transfected with SLC38A9 or SLC36A1 in the pCMV-HA vector, and the lysates were prepared and subjected to HA immunoprecipitation followed by immunoblotting for the indicated proteins. (<b>C</b>) C2C12 cells were pretreated without serum for 15 h, and without amino acids for 3 h, then cultured for 10 min in a special medium (<a href="#app1-biomolecules-11-01314" class="html-app">Supplemental Table S1</a>) including the no amino acids group (−AA), the only Arg group (+Arg), the only Leu group (+Leu). The interaction of SLC38A9 and SLC36A1 was detected by Co-IP as (<b>A</b>). (<b>D</b>) Densitometric analysis of the immunodetection of SLC38A9 relative to input control or SLC36A1. Values are the mean ± SEM; <span class="html-italic">n</span> = 3; * <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>PPI network. Proteins are represented by dots and signaling pathways are indicated by rounded rectangles.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Special Cell Culture Medium Treatment
2.2. Immunofluorescence
2.3. Immunoblotting
2.4. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR (qRT-PCR)
2.5. Plasmid Construction, RNA Interference, and Transient Transfection
2.6. Co-Immunoprecipitation (Co-IP)
2.7. MS-Based Proteomics
2.8. Functional Annotation and Enrichment Analysis
2.9. Statistical Analysis
3. Results
3.1. Leucine Upregulates the Activity of mTORC1 and the Expression of SLC38A9 and SLC36A1
3.2. SLC38A9 and SLC36A1 Increase mTOR Phosphorylation
3.3. Interaction of Amino Acid Transporters SLC38A9 and SLC36A1
3.4. Identification of Interacting Proteins of SLC38A9
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walrand, S.; Gryson, C.; Salles, J.; Giraudet, C.; Migné, C.; Bonhomme, C.; Ruyet, P.; Boirie, Y. Fast-digestive protein supplement for ten days overcomes muscle anabolic resistance in healthy elderly men. Clin. Nutr. 2016, 35, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, J.; Martinez-Agosto, J.A. Effects of mTOR Inhibitors on Components of the Salvador-Warts-Hippo Pathway. Cells 2012, 1, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Guan, K.-L. Amino Acid Signaling in TOR Activation. Annu. Rev. Biochem. 2011, 80, 1001–1032. [Google Scholar] [CrossRef]
- Hundal, H.S.; Taylor, P.M. Amino acid transceptors: Gate keepers of nutrient exchange and regulators of nutrient signaling. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E603–E613. [Google Scholar] [CrossRef] [Green Version]
- Mieulet, V.; Roceri, M.; Espeilac, C.; Sotiropoulos, A.; Ohanna, M.; Oorschot, V.; Klumperman, J.; Sandri, M.; Pende, M. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am. J. Physiol. Cell Physiol. 2007, 293, C712–C722. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Proud, C.G. The mTOR pathway in the control of protein synthesis. Physiology 2006, 21, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Freeberg, M.A.; Han, T.; Kamath, A.; Yao, Y.; Fukuda, T.; Suzuki, T.; Kim, J.K.; Inoki, K. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. eLife 2017, 6, e25237. [Google Scholar] [CrossRef] [Green Version]
- Bar-Peled, L.; Sabatini, D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014, 24, 400–406. [Google Scholar] [CrossRef]
- Efeyan, A.; Zoncu, R.; Sabatini, D.M. Amino acids and mTORC1: From lysosomes to disease. Trends Mol. Med. 2012, 18, 524–533. [Google Scholar] [CrossRef]
- Nagamori, S.; Wiriyasermkul, P.; Okuda, S.; Kojima, N.; Hari, Y.; Kiyonaka, S.; Mori, Y.; Tominaga, H.; Ohgaki, R.; Kanai, Y. Structure–activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling. Amino Acids 2016, 48, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Niioka, H.; Asatani, S.; Yoshimura, A.; Ohigashi, H.; Tagawa, S.; Miyake, J. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images. Human Cell. 2018, 31, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Taylor, W.E.; Bhasin, S.; Artaza, J.; Byhower, F.; Azam, M.; Willard, D.H., Jr.; Kull, F.C., Jr.; Gonzalez-Cadavid, N. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E221–E228. [Google Scholar] [CrossRef] [Green Version]
- Menon, S.; Dibble, C.C.; Talbott, G.; Hoxhaj, G.; Valvezan, A.J.; Takahashi, H.; Cantley, L.C.; Manning, B.D. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Abraham, R.T. Making sense of amino acid sensing. Science 2015, 347, 128–129. [Google Scholar] [CrossRef]
- Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 2011, 334, 678–683. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.M. Role of amino acid transporters in amino acid sensing. Am. J. Clin. Nutr. 2014, 99, 223S–230S. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zhou, Z.; Wang, L.; Saremi, B.; Helmbrecht, A.; Wang, Z.; Loor, J.J. Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J. Dairy Sci. 2018, 101, 5502–5514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebsamen, M.; Pochini, L.; Stasyk, T.; de Araújo, M.E.G.; Galluccio, M.; Kandasamy, R.K.; Snijder, B.; Fauster, A.; Rudashevskaya, E.L.; Bruckner, M.; et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tsun, Z.Y.; Wolfson, R.; Shen, K.; Wyant, G.A.; Plovanich, M.E.; Yuan, E.D.; Jones, T.D.; Chantranupong, L.; Comb, W.; et al. The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to mTORC1. Science 2015, 347, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Hellsten, S.V.; Tripathi, R.; Ceder, M.M.; Fredriksson, R. Nutritional stress induced by amino acid starvation results in changes for Slc38 transporters in immortalized hypothalamic neuronal cells and primary cortex cells. Front. Mol. Biosci. 2018, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Genau, H.M.; Behrends, C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell Biol. 2015, 35, 2479–2494. [Google Scholar] [CrossRef] [Green Version]
- Sagne, C.; Agulhon, C.; Ravassard, P.; Darmon, M.; Hamon, M.; Mestikawy, S.E.; Gasnier, B.; Giros, B. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc. Natl. Acad. Sci. USA 2001, 98, 7206–7211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thwaites, D.T.; Anderson, C.M. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 2011, 164, 1802–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ögmundsdóttir, M.H.; Heublein, S.; Kazi, S.; Reynolds, B.; Visvalingam, S.M.; Shaw, M.K.; Goberdhan, D.C.I. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS ONE 2012, 7, e36616. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wan, X.; Peng, J.; Xiong, Q.; Niu, H.; Li, H.; Chai, J.; Jiang, S. The effects of reduced dietary protein level on amino acid transporters and mTOR signaling pathway in pigs. Biochem. Biophys. Res. Commun. 2017, 485, 319–327. [Google Scholar] [CrossRef]
- Kang, Y.; Yin, Y.; Li, X.; Xi, P.; Wang, J.; Jian, L.; Hou, Y.; Wu, G. Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 2012, 42, 2491–2500. [Google Scholar]
- Wang, D.; Guo, C.; Wan, X.; Guo, K.; Niu, H.; Zheng, R.; Chai, J.; Jiang, S. Identification of amino acid response element of SLC38A9 as an ATF4-binding site in porcine skeletal muscle cells. Biochem. Biophys. Res. Commun. 2021, 569, 167–173. [Google Scholar] [CrossRef]
- Wu, G. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am. J. Physiol 1997, 272, G1382. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, X.; Zhang, X.; Li, L.; Jin, Y.; Liu, W. FLCN is a novel Rab11A-interacting protein and is involved in the Rab11A-mediated recycling transport. J. Cell Sci. 2018, 131, jcs218792. [Google Scholar] [CrossRef] [Green Version]
- Castellano, B.; Thelen, A.; Moldavski, O.; Feltes, M.; Welle, R.; Mydock-McGrane, L.; Jiang, X.; Eijkeren, R.; Davis, O.; Louie, S.; et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex. Science 2017, 355, 1306–1311. [Google Scholar] [CrossRef] [Green Version]
- Heublein, S.; Kazi, S.; Ogmundsdóttir, M.H.; Attwood, E.V.; Kala, S.; Boyd, C.A.; Wilson, C.; Goberdhan, D.C. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010, 29, 4068–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkington, J.D.; Lebrasseur, N.K.; Siebert, A.P.; Fielding, R.A. Contraction-mediated mTOR, p70S6K, and ERK1/2 phosphorylation in aged skeletal muscle. J. Appl. Physiol. 2004, 97, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holz, K.; Blenis, J. Identification of S6 Kinase 1 as a Novel Mammalian Target of Rapamycin (mTOR)-phosphorylating Kinase. J. Biol. Chem. 2005, 280, 26089–26093. [Google Scholar] [CrossRef] [Green Version]
- Chiang, G.G.; Abraham, R.T. Phosphorylation of Mammalian Target of Rapamycin (mTOR) at Ser-2448 Is Mediated by p70S6 Kinase. J. Biol. Chem. 2005, 280, 25485–25490. [Google Scholar] [CrossRef] [Green Version]
- Fry, C.S.; Drummond, M.J.; Glynn, E.L.; Dickinson, J.M.; Gundermann, D.M.; Timmerman, K.L.; Walker, D.K.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet. Muscle 2011, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Katta, A.; Kakarla, S.; Wu, M.; Paturi, S.; Gadde, M.K.; Arvapalli, R.; Kolli, M.; Rice, K.M.; Blough, E.R. Altered regulation of contraction-induced Akt/mTOR/p70S6k pathway signaling in skeletal muscle of the obese zucker rat. Exp. Diabetes Res. 2009, 2009, 384683. [Google Scholar] [CrossRef]
- Parkington, J.D.; Siebert, A.P.; Lebrasseur, N.K.; Fielding, R.A. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R1086–R1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, B.; Dunlop, E.A. The lysosome: A crucial hub for AMPK and mTORC1 signalling. Biochem. J. 2017, 474, 1453–1466. [Google Scholar] [CrossRef] [Green Version]
- Columbus, D.A.; Fiorotto, M.L.; Davis, T.A. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 2015, 47, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- Chantranupong, L.; Scaria, S.; Saxton, R.; Gygi, M.; Shen, K.; Wyant, G.; Wang, T.; Harper, J.W.; Gygi, S.; Sabatini, D. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016, 165, 153–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, H.T.; Ma, J.; Martinez, S.S.; Gonen, T. Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat. Struct. Mol. Biol. 2018, 25, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agulhon, C.; Rostaing, P.; Ravassard, P.; Sagné, C.; Triller, A.; Giros, B. Lysosomal amino acid transporter LYAAT-1 in the rat central nervous system: An in situ hybridization and immunohistochemical study. J. Comp. Neurol. 2003, 462, 71–89. [Google Scholar] [CrossRef]
- Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.X.; Park, H.W.; Plouffe, S.W.; Tagliabracci, V.S.; Guan, K.L. Differential regulation of mTORC1 by leucine and glutamine. Science 2015, 347, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; Lindquist, R.A.; Thoreen, C.C.; Bar-Peled, L.; Sabatini, D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320, 1496–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, R.; Ouchi, N.; Ito, M.; Kihara, S.; Shiojima, I.; Pimentel, D.R.; Kumada, M.; Sato, K.; Schiekofer, S.; Ohashi, K.; et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med. 2004, 10, 1384–1389. [Google Scholar] [CrossRef] [Green Version]
- Wyant, G.A.; Abu-Remaileh, M.; Wolfson, R.L.; Chen, W.W.; Freinkman, E.; Da Nai, L.V.; Heiden, M.V.; Sabatini, D.M. mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell 2017, 171, 642–654. [Google Scholar] [CrossRef]
- Kuang, S.; Sabatini, D.M. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc. Natl. Acad. Sci. USA 2018, 115, 201811727. [Google Scholar]
- Rahmati, N.; Kunzelmann, K.; Xu, J.; Barone, S.; Sirianant, L.; Zeeuw, C.I.D.; Soleimani, M. Slc26a11 is prominently expressed in the brain and functions as a chloride channel: Expression in Purkinje cells and stimulation of V H+-ATPase. Pflügers. Arch. 2013, 465, 1583–1597. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Barone, S.; Li, H.; Holiday, S.; Zahedi, K.; Soleimani, M. Slc26a11, a chloride transporter, localizes with the vacuolar H+-ATPase of A-intercalated cells of the kidney. Kidney Int. 2011, 80, 926–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radomski, N.; Jost, E. Molecular cloning of a murine cDNA encoding a novel protein, p38-2G4, which varies with the cell cycle. Exp. Cell Res. 1995, 220, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Tang, Q.; Miao, X.; Wu, Y.; Qian, J.; Zhao, W.; Wang, L.; Li, L.; Zhang, D. ErbB3 binding protein 1 (EBP1) participates in the regulation of intestinal inflammation via mediating Akt signaling pathway. Mol. Immunol. 2015, 67, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Harms, J.; Schluenzen, F.; Zarivach, R.; Bashan, A.; Gat, S.; Agmon, I.; Bartels, H.; Franceschi, F.; Yonath, A. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 2001, 107, 679–688. [Google Scholar] [CrossRef]
- Hu, P.; He, X.; Zhu, C.; Guan, W.; Ma, Y. Cloning and characterization of a ribosomal protein L23a gene from Small Tail Han sheep by screening of a cDNA expression library. Meta. Gene 2014, 2, 479–488. [Google Scholar] [CrossRef]
- Kenney, S.P.; Meng, X.J. Identification and fine mapping of nuclear and nucleolar localization signals within the human ribosomal protein S17. PLoS ONE 2015, 10, e0124396. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Du, Z.; Bai, Z.; Liang, Z. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity. PLoS ONE 2017, 12, e0182459. [Google Scholar] [CrossRef] [Green Version]
- Gray, K.T.; Suchowerska, A.K.; Bland, T.; Colpan, M.; Wayman, G.; Fath, T.; Kostyukova, A.S. Tropomodulin isoforms utilize specific binding functions to modulate dendrite development. Cytoskeleton 2016, 73, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.Y.; Bi, X.; Wu, D.; Kim, J.B.; Gunning, P.W.; Hong, W.; Han, W. Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nat. Commun. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.S.; Fritz-Six, K.L.; Fowler, V.M. Pointed-end capping by tropomodulin3 negatively regulates endothelial cell motility. J. Cell Biol. 2003, 161, 371–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.R.; Gwak, M.; Yoo, N.J.; Lee, S.H. Inactivating frameshift mutation of AKT1S1, an mTOR inhibitory gene, in colorectal cancers. Scand. J. Gastroenterol. 2015, 50, 503–504. [Google Scholar] [CrossRef]
- Hale, C.M.; Cheng, Q.; Ortuno, D.; Huang, M.; Nojima, D.; Kassner, P.D.; Wang, S.; Ollmann, M.M.; Carlisle, H.J. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy 2016, 12, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Bánréti, Á.; Sass, M.; Graba, Y. The emerging role of acetylation in the regulation of autophagy. Autophagy 2013, 9, 819–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Cheung, L.W.T.; Li, J.; Ju, Z.; Yu, S.; Stemke-Hale, K.; Dogruluk, T.; Lu, Y.; Liu, X.; Gu, C.; et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome. Res. 2012, 22, 2120–2129. [Google Scholar] [CrossRef] [Green Version]
- Mosesson, Y.; Mills, G.B.; Yarden, Y. Derailed endocytosis: An emerging feature of cancer. Nat. Rev. Cancer 2008, 8, 835–850. [Google Scholar] [CrossRef]
- O’Donoghue, P.; Ling, J.; Wang, Y.S.; Söll, D. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 2013, 9, 594–598. [Google Scholar] [CrossRef]
- Englander, M.T.; Avins, J.L.; Fleisher, R.C.; Liu, B.; Effraim, P.R.; Wang, J.; Schulten, K.; Leyh, T.S.; Gonzalez, R.L., Jr.; Cornish, V.W. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. Proc. Natl. Acad. Sci. USA 2015, 112, 6038–6043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.; Rosario, F.J.; Powell, T.L.; Jansson, T. Mechanistic target of rapamycin is a novel molecular mechanism linking folate availability and cell function. J. Nutr. 2017, 147, 1237–1242. [Google Scholar] [CrossRef] [Green Version]
- Carroll, B.; Nelson, G.; Rabanal-Ruiz, Y.; Kucheryavenko, O.; Dunhill-Turner, N.A.; Chesterman, C.C.; Zahari, Q.; Zhang, T.; Conduit, S.E.; Mitchell, C.A.; et al. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J. Cell Biol. 2017, 216, 1949–1957. [Google Scholar] [CrossRef]
- Shiotani, B.; Zou, L. ATR signaling at a glance. J. Cell Biol. 2009, 122, 301–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appuhamy, J.; Nayananjalie, W.A.; England, E.M.; Gerrard, D.E.; Akers, R.M.; Hanigan, M.D. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells. J. Dairy Sci. 2014, 97, 419–429. [Google Scholar] [CrossRef]
- Carling, D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem. Sci. 2004, 29, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Capano, M.; Crompton, M. Bax translocates to mitochondria of heart cells during simulated ischaemia: Involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem. J. 2006, 395, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, M.; Xie, Z. Regulation of interplay between autophagy and apoptosis in the diabetic heart: New role of AMPK. Autophagy 2013, 9, 624–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, L.E.; Williamson, L.E.; Chan, E.Y.W. Advances in autophagy regulatory mechanisms. Cells 2016, 5, 24. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Wan, X.; Du, X.; Zhong, Z.; Peng, J.; Xiong, Q.; Chai, J.; Jiang, S. Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells. Biomolecules 2021, 11, 1314. https://doi.org/10.3390/biom11091314
Wang D, Wan X, Du X, Zhong Z, Peng J, Xiong Q, Chai J, Jiang S. Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells. Biomolecules. 2021; 11(9):1314. https://doi.org/10.3390/biom11091314
Chicago/Turabian StyleWang, Dan, Xuebin Wan, Xiaoli Du, Zhuxia Zhong, Jian Peng, Qi Xiong, Jin Chai, and Siwen Jiang. 2021. "Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells" Biomolecules 11, no. 9: 1314. https://doi.org/10.3390/biom11091314
APA StyleWang, D., Wan, X., Du, X., Zhong, Z., Peng, J., Xiong, Q., Chai, J., & Jiang, S. (2021). Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells. Biomolecules, 11(9), 1314. https://doi.org/10.3390/biom11091314