Abstract
We propose a novel dynamic gate algorithm (DGA) for precise and accurate peak detection. The algorithm uses a threshold-determined detection window and center of gravity algorithm with bias compensation. We analyze the wavelength fit resolution of the DGA for different values of the signal-to-noise ratio and different peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with better stability and accuracy than conventional algorithms. This makes it very attractive for future implementation in sensing systems, especially based on multimode fiber Bragg gratings.
© 2015 Optical Society of America
Full Article |
PDF Article
More Like This
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (9)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (11)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription