Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Algorithm 941: htucker---A Matlab Toolbox for Tensors in Hierarchical Tucker Format

Published: 01 April 2014 Publication History

Abstract

The hierarchical Tucker format is a storage-efficient scheme to approximate and represent tensors of possibly high order. This article presents a Matlab toolbox, along with the underlying methodology and algorithms, which provides a convenient way to work with this format. The toolbox not only allows for the efficient storage and manipulation of tensors in hierarchical Tucker format but also offers a set of tools for the development of higher-level algorithms. Several examples for the use of the toolbox are given.

Supplementary Material

ZIP File (941.zip)
Software for htucker---A Matlab Toolbox for Tensors in Hierarchical Tucker Format

References

[1]
Acar, E., Dunlavy, D. M., and Kolda, T. G. 2011. A scalable optimization approach for fitting canonical tensor decompositions. J. Chemometr. 25, 2, 67--86.
[2]
Andersson, C. A. and Bro, R. 2000. The N-Way Toolbox for MATLAB. Chemometr. Intell. Lab. Syst. 52, 1, 1--4. http://www.models.life.ku.dk/nwaytoolbox.
[3]
Arnold, A. and Jahnke, T. 2012. On the approximation of high-dimensional differential equations in the hierarchical Tucker format. Tech. rep., KIT, Karlsruhe, Germany. http://www.math.kit.edu/ianm3/~jahnke/seite/jahnke_publications/media/arnold-jahnke.pdf.
[4]
Bader, B. W. and Kolda, T. G. 2006. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. 32, 4, 635--653. http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/.
[5]
Bader, B. W. and Kolda, T. G. 2007. Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30, 1, 205--231.
[6]
Ballani, J. 2012. Fast evaluation of near-field boundary integrals using tensor approximations. Dissertation, Universitat Leipzig.
[7]
Ballani, J. and Grasedyck, L. 2013. A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20, 1, 27--43.
[8]
Ballani, J., Grasedyck, L., and Kluge, M. 2012. Black box approximation of tensors in hierarchical tucker format. Linear Algebra Appl. 438, 2, 639--657.
[9]
Bauer, B., Carr, L. D., Evertz, H. G., Feiguin, A., Freire, J., et al. 2011. The ALPS project release 2.0: Open source software for strongly correlated systems. J. Statist. Mech. 5.
[10]
Carroll, J. and Chang, J.-J. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 3, 283--319.
[11]
De Lathauwer, L., De Moor, B., and Vandewalle, J. 2000. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 4, 1253--1278.
[12]
Espig, M. and Hackbusch, W. 2012. A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format. Numer. Math. 122, 3, 489--525.
[13]
Espig, M., Hackbusch, W., Handschuh, S., and Schneider, R. 2011. Optimization problems in contracted tensor networks. Comput. Visual. Sci. 14, 271--285.
[14]
Espig, M., Hackbusch, W., Rohwedder, T., and Schneider, R. 2012a. Variational calculus with sums of elementary tensors of fixed rank. Numer. Math. 122, 3, 469--488.
[15]
Espig, M., Schuster, M., Killaitis, A., Waldren, N., Wähnert, P., Handschuh, S., and Auer, H. 2012b. TensorCalculus library. http://gitorious.org/tensorcalculus.
[16]
Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations 3rd Ed. Johns Hopkins University Press, Baltimore, MD.
[17]
Grasedyck, L. 2004. Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Comput. 72, 3--4, 247--265.
[18]
Grasedyck, L. 2010a. Hierarchical low rank approximation of tensors and multivariate functions. In Lecture Notes of Zurich Summer School on Sparse Tensor Discretizations of High-Dimensional Problems.
[19]
Grasedyck, L. 2010b. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 4, 2029--2054.
[20]
Hackbusch, W. 2012. Tensor Spaces and Numerical Tensor Calculus. Series in Computational Mathematics, vol. 42, Springer.
[21]
Hackbusch, W. and Kuhn, S. 2009. A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 5, 706--722.
[22]
Hackbusch, W., Khoromskij, B. N., Sauter, S. A., and Tyrtyshnikov, E. E. 2012. Use of tensor formats in elliptic eigenvalue problems. Numer. Linear Algebra Appl. 19, 1, 133--151.
[23]
Harshman, R. A. 1970. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers Phonet. 16, 1--84.
[24]
Holtz, S., Rohwedder, T., and Schneider, R. 2012. The alternating linear scheme for tensor optimization in the tensor train format. SIAM J. Sci. Comput. 34, 2, A683--A713.
[25]
Huckle, T., Waldherr, K., and Schulte-Herbrüggen, T. 2013. Computations in quantum tensor networks. Linear Algebra Appl. 438, 2, 750--781.
[26]
Kazeev, V. A. and Khoromskij, B. N. 2012. Low-rank explicit QTT representation of Laplace operator and its inverse. SIAM J. Matrix Anal. Appl. 33, 3, 742--758.
[27]
Khoromskij, B. N. and Oseledets, I. V. 2010. Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDES. Comput. Methods Appl. Math. 10, 4, 376--394.
[28]
Khoromskij, B. N. and Oseledets, I. V. 2011. QTT approximation of elliptic solution operators in higher dimensions. Russian J. Numer. Anal. Math. Model. 26, 3, 303--322.
[29]
Khoromskij, B. N. and Schwab, C. 2011. Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDES. SIAM J. Sci. Comput. 33, 1, 364--385.
[30]
Koch, O. and Lubich, C. 2010. Dynamical tensor approximation. SIAM J. Matrix Anal. Appl. 31, 5, 2360--2375.
[31]
Kolda, T. G. and Bader, B. W. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3, 455--500.
[32]
Kressner, D. and Tobler, C. 2010. Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31, 4, 1688--1714.
[33]
Kressner, D. and Tobler, C. 2011. Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32, 4, 1288--1316.
[34]
Kressner, D. and Tobler, C. 2012. htucker -- A MATLAB Toolbox for tensors in hierarchical Tucker format. Tech. rep. 2012-02, MATHICSE, EPF Lausanne. (Extended version at http://anchp.epfl.ch/htucker.)
[35]
Lubich, C., Rohwedder, T., Schneider, R., and Vandereycken, B. 2013. Dynamical approximation of hierarchical Tucker and tensor-train tensors. SIAM J. Matrix Anal. Appl. 34, 2, 470--494.
[36]
Oseledets, I. V. 2011a. MATLAB TT-Toolbox version 2.1. http://spring.inm.ras.ru/osel/?pageid=24.
[37]
Oseledets, I. V. 2011b. Tensor-train decomposition. SIAM J. Sci. Comput. 33, 5, 2295--2317.
[38]
Oseledets, I. V. and Khoromskij, B. N. 2010. DMRG+QTT approach to high-dimensional quantum molecular dynamics. Preprint 69/2010. Max-Planck-Institut für Mathematik in den Naturwissenschaften.
[39]
Schollwöck, U. 2011. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 1, 96--192.
[40]
Tobler, C. 2012. Low-rank tensor methods for linear systems and eigenvalue problems. Ph.D. dissertation, ETH Zurich, Switzerland.
[41]
Tucker, L. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 3, 279--311.

Cited By

View all
  • (2024)Tensor approximation of functional differential equationsPhysical Review E10.1103/PhysRevE.110.015310110:1Online publication date: 30-Jul-2024
  • (2024)Numerical simulation of long-range open quantum many-body dynamics with tree tensor networksPhysical Review A10.1103/PhysRevA.109.022420109:2Online publication date: 13-Feb-2024
  • (2024)Implicit Low-Rank Riemannian Schemes for the Time Integration of Stiff Partial Differential EquationsJournal of Scientific Computing10.1007/s10915-024-02629-8101:1Online publication date: 13-Aug-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 40, Issue 3
April 2014
152 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/2610268
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 April 2014
Accepted: 01 October 2013
Revised: 01 September 2013
Received: 01 February 2012
Published in TOMS Volume 40, Issue 3

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. Higher-order tensors
  2. MATLAB
  3. multilinear algebra
  4. tensor networks

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)59
  • Downloads (Last 6 weeks)5
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Tensor approximation of functional differential equationsPhysical Review E10.1103/PhysRevE.110.015310110:1Online publication date: 30-Jul-2024
  • (2024)Numerical simulation of long-range open quantum many-body dynamics with tree tensor networksPhysical Review A10.1103/PhysRevA.109.022420109:2Online publication date: 13-Feb-2024
  • (2024)Implicit Low-Rank Riemannian Schemes for the Time Integration of Stiff Partial Differential EquationsJournal of Scientific Computing10.1007/s10915-024-02629-8101:1Online publication date: 13-Aug-2024
  • (2024)A low‐rank method for parameter‐dependent fluid‐structure interaction discretizations with hyperelasticityZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik10.1002/zamm.202300562104:10Online publication date: 24-Aug-2024
  • (2023)Rank-Adaptive Time Integration of Tree Tensor NetworksSIAM Journal on Numerical Analysis10.1137/22M147379061:1(194-222)Online publication date: 23-Feb-2023
  • (2023)Implicit Reward Structures for Implicit Reliability ModelsIEEE Transactions on Reliability10.1109/TR.2022.319091572:2(774-794)Online publication date: Jun-2023
  • (2023)Computing vibrational energy levels using a canonical polyadic tensor method with a fixed rank and a contraction treeThe Journal of Chemical Physics10.1063/5.0149832158:21Online publication date: 1-Jun-2023
  • (2023)Implicit Integration of Nonlinear Evolution Equations on Tensor ManifoldsJournal of Scientific Computing10.1007/s10915-023-02352-w97:2Online publication date: 23-Sep-2023
  • (2022)A parallel low-rank solver for the six-dimensional Vlasov–Maxwell equationsJournal of Computational Physics10.1016/j.jcp.2022.111562469:COnline publication date: 15-Nov-2022
  • (2022)A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow mapsJournal of Computational Physics10.1016/j.jcp.2022.111089458:COnline publication date: 1-Jun-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media