Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Ambient intelligence: A survey

Published: 18 October 2011 Publication History

Abstract

In this article we survey ambient intelligence (AmI), including its applications, some of the technologies it uses, and its social and ethical implications. The applications include AmI at home, care of the elderly, healthcare, commerce, and business, recommender systems, museums and tourist scenarios, and group decision making. Among technologies, we focus on ambient data management and artificial intelligence; for example planning, learning, event-condition-action rules, temporal reasoning, and agent-oriented technologies. The survey is not intended to be exhaustive, but to convey a broad range of applications, technologies, and technical, social, and ethical challenges.

References

[1]
Aarts, E. 2004. Ambient intelligence: a multimedia perspective. IEEE Intell. Syst. 19, 1, 12--19.
[2]
Aarts, E. H., Aarts, E. H. L., and Encarnação, J. L. 2009. True Visions: The Emergence of Ambient Intelligence, Springer.
[3]
Abascal, J., Bonail, B., Marco, A., Casas, R., and Sevillano, J. L. 2008. AmbienNet: an intelligent environment to support people with disabilities and elderly people. In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS). 293--294.
[4]
Abascal, J. 1997. Ethical and social issues of the teleservices, for disabled and elderly people. In The Ethical Global Information Society. Culture and Democracy Revisited, J. Berleur and D. Whitehouse, Eds. Chapman and Hall.
[5]
Agrawal, R., and Srikant, R. 1995. Mining sequential patterns. In Proceedings of the 11th International Conference on Data Engineering, 3--14.
[6]
Albrecht, K. and McIntyre, L. 2006. Spychips: How Major Corporations and Government Plan to Track Your Every Move with RFID. Plume (Penguin).
[7]
Amigone, F., Gatti, N., Pinciroli, C., and Roveri, M. 2005. What planner for ambient intelligence applications? IEEE Trans. Syst. Cybern. A Syst. Humans, 35 1, 7--21.
[8]
Augello, A., Santangelo, A., Sorce, S., Pilato, G., Gentile, A., Genco, A., and Gaglio, S. 2007. A multimodal interaction guide for pervasive services access. In Proceedings of IEEE International Conference on Pervasive Services (PERSER), 250--256.
[9]
Augusto, J. C., and Nugent, C. D. 2004. The use of temporal reasoning and management of complex events in Smart Homes. In Proceedings of the European Conference on Artificial Intelligence (ECAI'04). R. L. de Mántaras and L. Saitta, Eds. IOS Press, 778--782.
[10]
Augusto, J. C., Nugent, C. D., and Black, N. D. 2004. Management and analysis of time-related data in Smart Homes environments. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering (Medico), 4--7.
[11]
Augusto, J. C., Nugent, C. D., Martin, S., and Olphert, C. 2005. Towards personalization of services and an integrated service model for Smart Homes applied to elderly care. In Proceedings of the International Conference on Smart Homes and Health Telematics. Montreal, Canada, From Smart Homes to Smart Care, S. Giroux and H Pigot, Eds. IOS Press. 151--158.
[12]
Augusto, J. C., and Nugent, C. D. 2006a. Smart homes can be smarter. In Designing Smart Homes: The Role of Artificial Intelligence, J. C Augusto and C. D. Nugent, Eds., Lecture Notes in Artificial Intelligence, vol. 4008, Springer, Berlin, 1--15.
[13]
Augusto, J. C., and Nugent, C. D. 2006b. Designing Smart Homes The Role of Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol. 4008, Springer, Berlin.
[14]
Augusto, J. C., Liu, J., McCullagh, P., Wang, H., and Yang, J.-B. 2008. Management of uncertainty and spatio-temporal aspects for monitoring and diagnosis in a smart home. Inter. J. Computat. Intell. Syst., 1, 4, 361--378.
[15]
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. 2003. The Description Logic Handbook. Cambridge University Press.
[16]
Bahadori, S., Cesta, A., Iocchi, L., Leone, G. R., Nardi, D., Pecora, F., Rasconi, R., and Scozzafava, L. 2004a. Towards ambient intelligence for the domestic care of the elderly, Robocare Tech. Rep. RC-TR-0704-3.
[17]
Bahadori, S., Cesta, A., Iocchi, L., Leone, G. R., Nardi, D., Pecora, F., Rasconi, R., and Scozzafava, L. 2004b. Towards ambient intelligence for the domestic care of the elderly. In Ambient Intelligence: A Novel Paradigm, P. Remagnino, G. L. Foresti, T. and Ellis, Eds., Springer.
[18]
Bahadori, S., Cesta, A., Grisetti, G., Iocchi, L., Leone, R., Nardi, D., Oddi, A., Pecora, F., and Rasconi, R. 2004c. RoboCare: Pervasive intelligence for the domestic care of the elderly. Intelligenza Artificiale, 1, 1, 16--21.
[19]
Ballegaard, A. S., Bunde-Pedersen, J., and Bardram, J. E. 2006. Where to, Roberta?: reflecting on the role of technology in assisted living. In Proceedings of the NordiCHI Conference. 373--376.
[20]
Batson, C., Turk, C., Shaw, L., and Klein, T. 1995. Information function of emphatic emotion: learning that we value the other's welfare. J. Personal. Social Psych. 68, 300--313.
[21]
Bellifemine, F., Poggi A., and Rimassa, G. 1999. JADE: A FIPA-compliant agent framework. In Proceedings of The Practical Applications on Intelligent Agents and MultiAgent Technology (PAAM). 97--108, http://sharon.cselt.it/projects/jade/.
[22]
BJHC&IM. 2006. The British Journal of Healthcare Computing & Information Management, 23, 1, 39.
[23]
Blum, A. and Furst, M. 1995. Fast planning through graph analysis. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI'95). 1636--1642.
[24]
Boella, G., van der Torre, L., and Villata, S. 2008. Institutional social networks for ambient intelligence, AISB Convention: Communication, Interaction and Social Intelligence.
[25]
Bohn, J., Coroama, V., Langheinrich, M., Mattern, F., and Rohs, M. 2004. Living in a world of smart everyday objects—Social, economic, and ethical implications. Human Ecol. Risk Assess., 10, 5.
[26]
Bosse, T., Jonker, C. M., Meij, L., van der Sharpanskyth, A., and Treur, J. 2006. Specification and verification of dynamics in cognitive agent models. In Proceedings of the 6th International Conference on Intelligent Agent Technology (IAT'06), T. Nishida, et al. Eds., IEEE Computer Society Press, Los Alamitos, 247--254.
[27]
Bosse, T., Hoogendoorn, M., Klein, M. C. A., and Treur, J. 2008. A component-based ambient agent model for assessment of driving behaviour. In Proceedings of the 5th International Conference on Ubiquitous Intelligence and Computing (UIC). F. E. Sandnes, Y. Zhang, C. Rong, L. T. Yang, J. Ma, Eds., Lecture Notes in Computer Science, vol. 5061, Springer, Berlin, 229--243.
[28]
Bouchard, B., Roy, P., Bouzouane, A., Giroux, S., and Mihailidis, A. 2008. An activity recognition model for Alzheimer's patients: extension of the COACH task guidance system. In Proceedings of the 18th European Conference on Artificial Intelligence (ECAI). IOS Press, Amsterdam, 2008, 811--812.
[29]
Brazier, F. M. T., Jonker, C. M., and Treur, J. 2000. Compositional design and reuse of a generic agent model. Appl. Artif. Intell. J. 14, 491--538.
[30]
Bresciani, P., Giorgini, P., Giunchiglia, F. Mylopoulos, J., and Prini, A. 2004. Tropos: an agent-orienyted software development methodology. J. Auton. Agents Multiagent Syst., 8, 3, 203--236.
[31]
Busetta, P., Merzi, M., Rossi, S., and Zanacanaro, M. 2003. Group communication for real-time role coordination and ambient intelligence. In Proceedings of the Workshop on Artificial Intelligence in Mobile Systems (in conjunction with UbiComp'03).
[32]
Busetta, P., Kuflik, T., Merzi, M., and Rossi, S. 2004. Service delivery in smart environments by implicit organisations. In Proceedings of the 1st International conference on Mobile and Ubiquitous Systems (MobiQuitous). IEEE Comp. Society.
[33]
Cai, Y. and Abascal, J. 2006. Ambient Intelligence for Everyday Life. Vol. 3864. Springer, Berlin.
[34]
CASPIAN (Consumers Against Supermarket Privacy and Numbering). http://www.nocards.org/.
[35]
Cesta, A., Oddi, A., and Smith, S. F. 2002. A constrained-based method for project scheduling with time windows. J. Heuristics, 8, 1, 109--135.
[36]
Cesta, A., Cortellessa, G., Pecora, F., and Rasconi, R. 2005. Exploiting scheduling techniques to monitor the execution of domestic activities. Intelligenza Artificiale, 2, 4.
[37]
Chervest, K., Davies, N., and Mitchell, K. 2002. The role of adaptive hypermedia within a context-aware tourist guide. Comm. ACM, 45, 5, 47--51.
[38]
Collier, R. W., O'Hare, G. M. P., Lowen, T., and Rooney, C. F. B. 2003. Beyond prototyping in the factory of agents. In Proceedings of the 3 rd International Central & Eastern European Conference on Multi-Agent Systems (CEEMAS). Lecture Notes in Computer Science, Springer, Berlin.
[39]
Cook, D. J., Youngblood, M., and Das, S. K. 2006. A multi-agent approach to controlling a smart environment. In Designing Smart, The Role of Artificial Intelligence, J. C Augusto and C.D. Nugent, Eds., Lecture Notes in Artificial Intelligence, vol. 4008, Springer, Berlin, 165--206.
[40]
Corchado, J. M., Bajo, J., and Abraham, A. 2008. GerAmi: improving healthcare delivery in geriatric residences. J. IEEE Intell. Syst. (Special Issue on Ambient Intelligence), 3, 2, 19--25.
[41]
Coroama, V. and Rothenbacher, F. 2003. The chatty environment—providing everyday independence to the visually impaired. In Proceedings of the 2nd International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications (UbiHealth).
[42]
Costantini, S., Mostarda, L., Tocchio, A., and Tsintza, P. 2008. DALICA: Agent-based ambient intelligence for cultural-heritage scenarios. IEEE Intell. Syst. (Special Issue on Ambient Intelligence), 23, 2, 34--41.
[43]
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., and Taylor, J. 2001. Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 18, 1, 32--80.
[44]
Craig, S. D., Graesser, A. C., Sullins, J., and Gholson, B. 2004. Affect and learning: an exploratory look into the role of affect in learning. J. Educat. Media, 29, 241--250.
[45]
da Silva, F. S. C. and Vasconcelos, W. W. 2007. Managing responsive environments with software agents. J. Appl. Artif. Intell. 21, 4, 469--488.
[46]
da Silva, F. S. C. and Vasconcelos, W. W. 2005. Agent-Based Management of Responsive Environments. In Proceedings of Advances in Artificial Intelligence, 9th Congress of the Italian Association for Artificial Intelligence, 224--236.
[47]
Damasio, A. R. 2000. The Feeling of What Happens-Body, Emotion and the Making of Consciousness, Harvest Books, London, UK.
[48]
Desjardins, M., Durfee, E. H., and Wolverton, M. 1999. A survey of research in distributed, continual planning. AI Mag. 20, 4, 13--22.
[49]
D'Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H., Person, N., Kort, B., el Kaliouby, R., Picard., R. W., and Graesser, A. 2008. AutoTutor detects and responds to learners affective and cognitive states. In Proceedings of the Workshop on Emotional and Cognitive Issues at the International Conference of Intelligent Tutoring Systems.
[50]
Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., and Burgelman, J.-C. 2001. Scenarios for ambient intelligence in 2010. IST Advisory Group Final Report, European Commission, EC. Brussels.
[51]
Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., and Burgelman, J.-C. 2003. Ambient intelligence : From vision to reality. IST Advisory Group Draft Report, European Commission.
[52]
Ekman, P. 1992. An argument for basic emotions. Cognition Emotion, 6, 4.
[53]
Encarnacao, J. L. and Kirste, T. 2005. Ambient intelligence: Towards smart appliance ensembles. M. Hemmje et al. Eds., Lecture Notes in Computer Science, vol. 3379, Sprinter, Berlin, 261--270.
[54]
Endriss, U., Mancarella, P., Sadri, F., Terreni, G., and Toni, F. 2004. The CIFF proof procedure for abductive logic programming with constraints. In Proceedings of the International Conference on Logics in AI (JELIA'04). Lecture Notes in Artificial Intelligence, Springer, Berlin, 31--43.
[55]
Favela, J., Rodriguez, M., Preciado, A., and Gonzalez, V. M. 2004. Integrating context-aware public displays into a mobile hospital information system. IEEE Trans. Inf. Technol. Biomed. 8, 3, 279--286.
[56]
Feng, L., Apers, P. M. G., and Jonker, W. 2004. Towards context-aware data management for ambient intelligence, In Proceedings of the 15th International Conference on Database and Expert Systems Applications (DEXA). Lecture Notes in Computer Science, vol. 3180, 422--431.
[57]
Fifer, S. K. and Thomas, N. 2002. A second and more promising round of e-health enterprises. Manag. Care Interface, 15, 52--56.
[58]
Firby, R. J. 1999. The RAPS Language Manual. Neodesic, Inc. Chicago, IL.
[59]
Forest, F., Oehme, A., Yaici, K., and Verchere-Morice, C. 2006. Psycho-social aspects of context awareness in ambient intelligent mobile systems. In Proceedings of the IST Summit Workshop, Capturing Context and Context Aware Systems and Platforms.
[60]
Friedewald, M., Da Costa, O., Punie, Y., Alahuhta, P., and Heinonen, S. 2005. Perspectives of ambient intelligence in the home environment. Telematics Informatics, 22, Elsevier, 221--238.
[61]
Gaggioli, A. 2005. Optimal experience in ambient intelligence. In Ambient Intelligence, G. Riva, F. Vatalaro, F. Davide, and M. Alcaniz, Eds., IOS Press, Amsterdam, 35--43.
[62]
Galton, A. 2004. Eventualities. In The Handbook of Time and Temporal Reasoning in Artificial Intelligence, Vila, Van Beek, Boddy, Fisher, Gabbay, Galton, and Morris, Eds., MIT Press.
[63]
Garate, A., Herrasti, N., and Lopez, A. 2005. GENIO: An ambient intelligence application in home automation and entertainment environment. In Proceedings of the Joint sOc-EUSAI Conference. 241--245.
[64]
Geib, C. W. and Goldman, R. P. 2001. Probabilistic plan recognition for hostile agents. In Proceedings of the 14th International Florida Artificial Intelligence Research Society Conference. AAAI Press, 580--584.
[65]
Geib, C. W. 2002. Problems with intent recognition elder care. In Proceedings of the AAAI Workshop on Automation as Caregiver.
[66]
Georgeff, M., Lansky, A., and Bessier, P. 1985. A procedural logic. In Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI).
[67]
Gomez, R., Augusto, J. C., and Galton, A. 2001. Testing an event specification language. In Proceedings of the 13 th International Conference of Software Engineering and Knowledge Engineering (SEKE). 341--346.
[68]
González, G., López, B., and de la Rosa, J. L. L. 2004a. Managing emotions in smart user models for recommender systems. In Proceedings of 6th International Conference on Enterprise Information Systems (ICEIS). 5, 187--194.
[69]
González, G., López, B., and de la Rosa, J. L. L. 2004b. Smart user models for tourism: A holistic approach for personalised tourism services. Inform. Technol. Tourism J.: Applicat. Methodol. Techniques, 6, 4, Cognizant Communication Corporation.
[70]
González, G., Cecilio, A., Lopez, B., and de la Rosa, J. L. L. 2005. Smart user models for ambient recommender systems. In Ambient Intelligence and (Everyday) Life, Y. Cai, Y. and J. Abascal, Eds., University of Basque Country, San Sebastian, Spain, 113--122.
[71]
González, G., de la Rosa, J. L. L., Dugdale, J., Pavard, B., El Jed, M., Pallamin, N., Angulo, C., and Klann, M. 2006. Towards ambient recommender systems: results of new cross-disciplinary trends. In Proceedings of ECAI Workshop on Recommender Systems.
[72]
Gordon, T. F. and Karacapilidis, N. 1997. The Zeno argumentation framework, In Proceedings of the 6th International Conference on Artificial Intelligence and Law, ACM Press, New York, 10--18.
[73]
Gouaux, F., Simon-Chautemps, L., Fayn, J., Adami, S., Arzi, M., Assanelli, D., Forlini, M.C., Malossi, C., Martinez, A., Placide, J., Ziliani, G.L., and Rubel, P. 2002. Ambient intelligence and pervasive systems for monitoring of citizens at cardiac risk: New solutions from the EPI-MEDICS project. Comput. Cardiol. 29, 289--292.
[74]
Grudin, J. 2002. Group dynamics and ubiquitous computing. Comm. ACM, 45, 12.
[75]
Guralnik, V., and Haigh, K. Z. 2002. Learning models of human behaviour with sequential patterns. In Proceedings of the AAAI Workshop on Automation as Caregiver. AAAI Press.
[76]
Gurevych, I. and Mühlhäuser, M. 2007. Natural language processing for ambient intelligence. Special Issue of KI-Zeitschrift Ambient Intelligence und Künstliche Intelligenz, 10--16.
[77]
Gurevych I. and Mühlhäuser, M. Eds. 2009. Int. J. Seman. Comput. (Special Issue on Ambient Computing).
[78]
Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., and Duman, H. 2004. Creating an ambient-intelligence environment using embedded agents. IEEE Intell. Syst. 12--20.
[79]
Haigh, K. Z., and Kiff, L. M. 2004. The independent lifestyle assistant (I.L.S.A.): AI lessons learned. In Proceedings of the 6th Conference on Innovative Applications of Artificial Intelligence (IAAI).
[80]
Haigh, K. Z., Kiff, L. M., and Ho, G. 2006. The Independent LifeStyle Assistant (I.L.S.A.): Lessons learned. Assistive Technol. 18, 1, 87--106.
[81]
Haux, R. 2006. Individualization, globalisation and health—about sustainable information technologies and the aim of medical informatics. Int. J. Medical Informatics 75, Elsevier, 795--808.
[82]
Heinonen, S. 2004. Mobile telework at the crossroads of social, environmental and cultural challenges. In Proceedings of the 9 th International Telework Workshop.
[83]
Heinsohn, J. 1994. Probabilistic description logics. In Proceedings of Uncertainty in Artificial Intelligence. 311--318.
[84]
Herbon, A., Oehme, A., and Zentsch, E. 2006. Emotions in ambient intelligence—an experiment on how to measure affective states. In Proceedings of the 20 th British Computer Society HCI Group Conference.
[85]
Jiang, X., Hong, J. I., and Landay, J. A. 2002. Approximate information flows: socially-based modelling of privacy in ubiquitous computing. In Procedings of the 4 th International Conference on Ubiquitous Computing (UbiComp), Springer-Verlag, 176--193.
[86]
Kakas, A. C., Kowalski, R., and Toni, F. 1992. Abductive logic programming. J. Logic Computation, 2, 6, 719--770.
[87]
Karacapilidis, N. and Papadias, D. 2001. Computer supported argumentation and collaborative decision making: The Hermes system. Inform. Syst. 26, 4, 259--277.
[88]
Keegan, S., O'Hare, G. M. P., and O'Grady, M. J. 2008. Easishop: ambient intelligence assists everyday shopping. J. Inform. Sci. 178, 3, 588--611.
[89]
Kemppainen, E., Abascal, J., Allen, B., Delaitre, S., Giovannini, C., and Soede, M. 2007. Ethical and legislative issues with regard to Ambient Intelligence. In Towards an Inclusive Future. Impact and Wider potential of Information and Communication Technologies, P. R. Roe, Ed. 188--205. http://www.tiresias.org/cost219ter/inclusive_future/inclusive_future_book.pdf
[90]
Kim, K. H., Bang, S. W., and Kim, S. R. 2004. Emotion recognition system using short-term monitoring of physiological signals. Medical Biological Engin. Comput. 42, 419--427.
[91]
Kofod-Peterson, A., and Aamodt, A. 2006. Contexualised ambient intelligence through case-based reasoning. In Proceedings of the 8th European Conference on Case-Based Reasoning (ECCBR). T. R. Roth-Berghofer et al. Eds., Lecture Notes in Artificial Intelligence, vol. 4106, Springer-Verlag, Berlin, 211--225.
[92]
Kopacsi, S., Kovacs, G., Anufriev, A., and Michelini, R. 2007. Ambient intelligence as enabling technology for modern business paradigms. Robotics Comput.-Integrat. Manufactur. 23, 247--256.
[93]
Korhonen, I., Parkka, J., and Gils, M. V. 2003. Health monitoring in the home of the future. IEEE Eng. Med. Biol. Mag. 22, 3, 66--73.
[94]
Kwon, O. B., and Sadeh, N. 2004. Applying case-based reasoning and multi-agent systems to context-aware comparative shopping, Decision Support Syst. 37, 199--213.
[95]
Levinson, R. 1997. The planning and execution assistant and trainer (PEAT). J. Head Trauma Rehab. 12, 85--91.
[96]
Li, Y., Feng, L., and Zhou, L. 2008. Context-aware database querying: Recent progress and challenges. In Context-Aware Mobile and Ubiquitous Computing for Enhanced Usability: Adaptive Technologies and Applications, D. Stojanovic, Ed., IGI, 147--170.
[97]
Liu, J., Augusto, J. C., and Wang, H. 2006. Considerations on uncertain spatio-temporal reasoning in smart home systems. In Proceedings of the 7 th International Conference on Applied Artificial Intelligence.
[98]
Ma, T., Kim, Y. D., Ma, Q., Tang, M., and Zhou, W. 2005. Context-aware implementation based on CBR for smart home. In Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications 2005 (WiMob). IEEE Computer Society, Vol. 4, 112--115.
[99]
Mahilidis, A., Fernie, G., and Barbenel, J. C. 2001. The use of artificial intelligence in the design of an intelligent cognitive orthotic for people with dementia. Assistive Technol. 13, 23--39.
[100]
Mahilidis, A., Carmichael, B., Boger, J., and Fernie, G. 2003. An intelligent environment to support aging-in- place, safety, and independence of older adults with dementia. In Proceedings of the 2 nd International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications (UbiHealth'03). J. McCarthy and J. Scott, Eds., 294--297.
[101]
Mahilidis, A., Carmichael, B., and Boger, J. 2004. The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence at home. IEEE Trans. Inform. Technol. Biomed. 8, 238--247.
[102]
Mancarella, P., Sadri, F., Terreni, G., and Toni, F. 2004. Planning partially for situated sgents. In Proceedings of 5th Workshop on Computational Logic in Multi-Agent Systems (CLIMA V). J. Leite and P.Torroni, Eds., Springer Verlag, 29--30.
[103]
Mancarella, P., Terreni, G., Sadri, F., Toni, F., and Endriss, U. 2009. The CIFF proof procedure for abductive logic programming with constraints: Theory, implementation and experiments. Theory Pract. Logic Program. 9, 6, 691--750.
[104]
Marchesotti, L., Piva, S., and Regazzoni, C. 2005. Structured context-analysis techniques in biologically inspired ambient-intelligence systems. IEEE Trans. Syst. Man, Cybernet. A, Syst. Humans. 3, 1, 106--120.
[105]
Marreiros, G., Santos, R., Ramos, C., Neves, J., Novais, P., Machado, J., and Bulas-Cruz, J. 2007a. Ambient intelligence in emotion based ubiquitous decision making. In Proceedings of the 2nd Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI), J. C. Augusto and D. Shapiro, Eds., 86--91.
[106]
Marreiros, G., Santos, R., Novais, P., Machado, J., Ramos, C., Neves, J., and Bulas-Cruz, J. 2007b. Argumentation-based decision making in ambient intelligence environments. In Proceedings of Progress in Artificial Intelligence, 13th Portuguese Conference on Artificial Intelligence (EPIA), Lecture Notes in Computer Science, Vol. 4874, Springer Berlin, 309--322.
[107]
Masthoff, J., and Gatt, A. 2006. In pursuit of satisfaction and prevention of embarrassment: affective state in group recommender systems. User Model. User-Adapt. Interac. J. Personal. Res. 16, 281--319.
[108]
Masthoff, J., Vasconcelos, W. W., Aitken, C., and Correa da Silva, F. S. 2007. Agent-based group modelling for ambient intelligence. In Proceedings of the AISB Symposium on Affective Smart Environments. P. Oliver and C. Kray, Eds. 90--96.
[109]
McLaughlin, A. C., Rogers, W. A., and Fisk, A. D. 2002. Effectiveness of audio and visual training presentation modes for glucometer calibration, In Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting, 2059--2063.
[110]
Misker, J. M. V., Veenman, C. J., and Rothkrantz, L. J. M. 2004. Groups of collaborating users and agents in ambient intelligent environments. In Proceedings of the 3 rd International Conference on Autonomous Agents and Multi Agent Systems (AAMAS). C. Sierra and L. Sonenberg, Eds., IEEE Computer Society, 1320--1321.
[111]
Mitchell, T. 1997. Decision tree learning. In Machine learning, T. Mitchell, Ed., The McGraw-Hill Companies, Inc., 52--78.
[112]
Mozer, M. C. 2005. Lessons from an adaptive house. In Smart Environments: Technologies, Protocols, and Applications, D. Cook and R. Das, Eds., Wiley & Sons, Hoboken, New Jersey, 273--294.
[113]
Munoz, M. A., Rodroguez, M., Favela, J., Martinez-Garcia, A. I., and Gonzalez, V. M. 2003. Context aware mobile communication in hospitals. IEEE Comput. 36, 38--46.
[114]
Mykityshyn, A. L., Fisk, A. D., and Rogers, W. A. 2002. Learning to use a home medical device: mediating age-related differences with training. Human Factors, 44, 354--364.
[115]
Niemela, M., Fuentetaja, R. G., Kaasinen, E., and Gallardo, J. L. 2007. Supporting independent living of the elderly with mobile-centric ambient intelligence: user evaluation of three scenarios, B. Schiele et al. Eds., Lecture Notes in Computer Science, vol. 4794, Springer-Verlag Berlin, 91--107.
[116]
Norwood, M. 2000. Affective feedback devices for continuous usability assessment. Masters thesis, Media Arts and Sciences, MIT, Cambridge, MA.
[117]
Oatley, K., and Johnson-Laird, P. N. 1987. Towards a cognitive theory of emotions. Cognition Emotion, 1, 29--50.
[118]
Paiva, A., Prada, R., and Picard, R. W. 2007. Affective computing and intelligent interaction. In Proceedings of the 2nd International Conference on Affective Computing and Intelligent Interaction, (ACII'07). 2007, A. Paiva, R. Prada, and R.W. Picard, Eds., Lecture Notes in Computer Science, vol. 4738, Springer Verlag, Berlin.
[119]
Park, D., Nam, T., Shi, C., Golub, G., and Van Loan, C. 2006. Designing an immersive tour experience system for cultural tour sites. In Proceedings of Extended Abstracts CHI. ACM Press, New York, 1193--1198.
[120]
Patkos T., Bikakis, A., Antoniou, G., Papadopouli, M., and Plexousakis, D. 2007. Distributed AI for ambient intelligence: issues and approaches, In Proceedings of the European Conference on Ambient Intelligence (AmI). B. Schiele, A. K. Dey, H. Gellersen, B. de Ruyter, M. Tscheligi, R. Wichert, E. Aarts, and A. Buchmann (Eds.), Lecture Notes in Computer Science, Vol. 4794, Springer Berlin, 156--176.
[121]
Paton, N., and Diaz, O. 1999. Active database systems. ACM Comput. Surv. 31, 1, 63--103.
[122]
Penserini, L., Bresciani, P., Kuflik, T., and Busetta, P. 2005. Using Tropos to model agent based architectures for adaptive systems: A case study in ambient intelligence. In Proceedings of the IEEE International Conference on Software—Science, Technology and Engineering (SwSTE). IEEE Press.
[123]
Petersen, S. A. and Kofod-Petersen, A. 2006. The non-accidental tourist: Using ambient intelligence for enhancing tourist experiences. In Network-Centric Collaboration and Supporting Frameworks, L. Camarinha-Matos, H. Afsarmanesh, and M. Ollus, Eds., International Federation for Information Processing (IFIP). Vol. 224, 619--626.
[124]
Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson, D. J., Fox, D., Kautz, H., and Hahnel, D. 2004. Inferring activities from interactions with objects. Pervasive Comput. 3, 50--57.
[125]
Picard, R. W. 2000. Towards computers that recognise and respond to user emotion, Tech. Rep. 0018-8670/00 2000 IBM.
[126]
Picard, R. W. 2007. Toward machines with emotional intelligence. In The Science of Emotional Intelligence: Knowns and Unknowns, G. Matthews, M. Zeidner, and R.D. Roberts, Eds., Oxford University Press, Oxford, UK.
[127]
Piva, S., Bonamico, C., Regazzoni, C., Lavagetto, F. 2005. A flexible architecture for ambient intelligence systems supporting adaptive multimodal interaction with users. In Ambient Intelligence, G. Riva, F. Vatalaro, F. Davide, and M. Alcañiz, Eds., IOS Press, http://www.ambientintelligence.org.
[128]
Plocher, T. and Kiff, L. M. 2003. Mobility monitoring with the Independent LifeStyle Assistant (I.L.S.A.). In Proceedings of the International Conference on Aging, Disability and Independence (ICADI). 170--171.
[129]
Pollock, M. E, Brown, L., Colbry, D., McCarthy, C. E., Orosz, C., Peintner, B., Ramakrishnan, S., and Tsamardinos, I. 2003. Autoreminder: an intelligent cognitive orthotic system for people with memory impairment. Robotics Auton. Syst. 44, 273--282.
[130]
Prakken, H. and Gordon, T. F. 1999. Rules of order for electronic group decision making - a formalization methodology. In Proceedings of the VIM Spring and Winter Workshops on Collaboration between Human and Artificial Societies. Lecture Notes in Artificial Intelligence, vol. 1624, Springer Verlag, Berlin, 246--263.
[131]
Ramos, C., Augusto, J. C., and Shapiro, D. Eds. 2008. IEEE Intel. Syst. Mag. 23, 2.
[132]
Ramos, C. 2008. An architecture for ambient intelligence environments. In Advances in Soft Computing, 51, Springer, 30--38.
[133]
Rao, A. S. and Georgeff, M. P. 1991. Modelling rational agents within a BDI architecture. In Principles of Knowledge Representation and Reasoning.
[134]
Rao, A. S. and Georgeff, M. P. 1995. BDI-agents: From theory to practice. In Proceedings of the 1st International Conference on Multiagent Systems (ICMAS). 312--319.
[135]
Riva, G. 2003. Ambient intelligence in health care. CyberPsych. Behav. 6, 3, Mary Ann Liebert, Inc. Publishers, 295--300.
[136]
Rodriguez, M. D., Favela, J., Martinez, E. A., and Munoz, M. A. 2004. Location-aware access to hospital information and services. IEEE Trans. Inform. Technol. Biomed. 8, 4, 448--455.
[137]
Rodriguez, M., Favela, J., Preciado, A., and Vizcaino, A. 2005. Agent-based ambient intelligence for healthcare. AI Comm. 18, 3, 201--216.
[138]
Rouvroy, A. 2008. Privacy, data protection, and the unprecedented challenges of ambient intelligence. Studies Ethics, Law, Technol. 2, 1, Article 3.
[139]
Rumetshofer, H., Puhretmair, F., and Wob, W. 2003. Individual information presentation based on cognitive styles for tourism information systems, In Proceedings of the International Conference on Information and Communication Technologies in Tourism. A. J. Frew, M. Hitz, and P. O'Connor, Eds., Springer Verlag, Berlin, 440--449.
[140]
Sacerdoti, E. 1977. A Structure for Plans and Behaviour. North Holland, Elsevier.
[141]
Sadri, F. and Toni, F. 2000. Abduction with negation as failure for active and reactive rules. In Proceedings of the 6 th Congress of the Italian Association for Artificial Intelligence. Lecture Notes in Artificial Intelligence, vol. 1792, E. Lamma and P. Mello, Eds., 49--60.
[142]
Sadri, F., Toni, F., and Torroni, P. 2002. Resource reallocation via negotiation through abductive logic programming. In Proceedings of the International Conference on Logics in AI. Lecture Notes in Artificial Intelligence, vol. 2424, Springer-Verlag, 419--431.
[143]
Sadri, F. 2007. Ambient Intelligence for Care of the Elderly in Their Homes. In Proceedings of the 2nd Workshop on Artificial Techniques for Ambient Intelligence (AITAmI). 62--67.
[144]
Sadri, F. and Stathis, K. 2008. Ambient intelligence. In Encyclopedia of Artificial Intelligence, J.R. Rabunal, J. Dorado, and A. P. Sierra, Eds., IGI Global.
[145]
Saffiotti, A. and Broxvall, M. 2005. PEIS ecologies: ambient intelligence meets autonomous robotics. In Proceedings of the Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies. ACM International Conference Proceeding Series, volume 121, 277--281.
[146]
Salovey, P. and Mayer, J. D. 1990. Emotional intelligence. Imagination, Cognition, Personality 9, 3, 185--211.
[147]
Sánchez, D., Tentori, M., and Favela, J. 2008. Activity recognition for the smart hospital, J. IEEE Intell. Syst. (Special Issue on Ambient Intelligence) 23, 2, 50--57.
[148]
Schank, R. 1982. Dynamic Memory: A Theory of Learning in Computers and People. Cambridge University Press, Cambridge, UK.
[149]
SEEM. 2003. Single European market, Rep. of SEEM Workshop.
[150]
Simpson, R., Schreckenghost, D., LoPresti, E. F., and Kirsch, N. 2006. Plans and planning in smart homes. In Designing Smart Homes The Role of Artificial Intelligence, J. C Augusto and C. D. Nugent, Eds., Lecture Notes in Artificial Intelligence, vol. 4008, Springer Verlag, Berlin, 71--84.
[151]
Sleeth, C. E. 2002. Technology map: Pervasive computing. Tech. rep. SRI Consulting Business Intelligence.
[152]
Stankovski, V. and Trnkoczy, J. 2006. Application of decision trees to smart homes. In Designing Smart Homes The Role of Artificial Intelligence, J. C. Augusto and C. D. Nugent, Eds., Lecture Notes in Artificial Intelligence, vol. 4008, Springer Verlag, Berlin, 132--145.
[153]
Tate, A, Dalton, J., and Levine, J. 2000. O-Plan: a web-based AI palnning agent. In Proceedings of the 7 th National Conference on Artificial Intelligence (AAAI). AAAI Press, 1131--1132.
[154]
Thackara, J. 2001. The design challenge of pervasive computing. Interactions, 8, 3, 46--52.
[155]
UN 2002. Population aging. UN Department of Economic Social Affairs, Population Division. http://www.un.org/esa/population/publications/ageing/Graph.pdf.
[156]
UN 2004. World population to 2300. UN Department of Economic Social Affairs, Population Division, United Nations, New York. http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf.
[157]
van Bunningen, A. H., Feng, L., and Apers, P. M. G. 2006. A context-aware query preference model for ambient intelligence. In Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA). 33--43.
[158]
van Bunningen, A. H., Fokkinga, M., Apers, P., and Feng, L. 2007. Ranking query results using context-aware preferences. In Proceedings of the 1st International Workshop on Ranking in Databases (In Conjunction with ICDE). IEEE Computer Society Press. http://www.cs.uwaterloo.ca/conferences/dbrank/2007/paper21/paper.pdf.
[159]
van Heerde, H., Anciaux, N., Feng, L., and Apers, P. M. G. 2006. Balancing smartness and privacy for ambient intelligence. In Proceedings of the 1st European conference on Smart Sensing and Context (EuroSSC), 255--258.
[160]
Vastfjall, D., Friman, M., Garling, T., and Kleiner, M. 2000. The measurement of core affects: a Swedish self-report measure derived from the affect circumplex. Goteborg Psychol. Rep. 30, 8, Goteborg University.
[161]
Weber, W. 2003. Ambient intelligence - Industrial research on a visionary concept, In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED). 247--251.
[162]
Werner, W., Rabaey, J. M., and Aarts, E. H. L. 2005. Ambient Intelligence. Springer.
[163]
Weiser, M. 1991. The computer for the 21st century. In Scientific Amer. 94-104.
[164]
Weiser, M. 1993. Some computer science issues in ubiquitous computing. Comm. ACM 36, 7, 75--85.
[165]
World Health Organisation. 2005. eHealth resolution. In Proceedings of the 8th World Health Assembly. WHO, Geneva. http://www.who.int/gb/e/e_wha58.html.
[166]
Wright, D., Gutwirth, S., Friedewald, M., Vildjiounaite, E., and Punie, Y. Eds. 2008. Safeguards in a World of Ambient Intelligence, The International Library of Ethics, Law and Technology, Springer.
[167]
Yang, J., Liu, J., Wang, J., Sii, H., and Wang, H. 2006. Belief rule-based inference methodology using the evidential reasoning approach -- RIMER, IEEE Trans. Syst. Man, Cybernetics, Part A, 36, 2, 266--285.
[168]
Ziv, J. and Lampel, A. 1978. Compression of individual sequences via variable rate coding. IEEE Trans. Inform. Theory, 24, 530--536.

Cited By

View all
  • (2024)Unlocking Artificial Intelligence Adoption in Local Governments: Best Practice Lessons from Real-World ImplementationsSmart Cities10.3390/smartcities70400647:4(1576-1625)Online publication date: 28-Jun-2024
  • (2024)Asistované prostredie pre nevidiacich : bývanie, pracovisko a počítač10.24040/2024.9788055721422Online publication date: 30-May-2024
  • (2024)Internet of robotic things for independent living: Critical analysis and future directionsInternet of Things10.1016/j.iot.2024.10112025(101120)Online publication date: Apr-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 43, Issue 4
October 2011
556 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/1978802
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 October 2011
Accepted: 01 February 2010
Revised: 01 February 2010
Received: 01 April 2009
Published in CSUR Volume 43, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Ambient intelligence
  2. agents
  3. assisted living
  4. multiagent systems
  5. social and ethical issues

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)168
  • Downloads (Last 6 weeks)23
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Unlocking Artificial Intelligence Adoption in Local Governments: Best Practice Lessons from Real-World ImplementationsSmart Cities10.3390/smartcities70400647:4(1576-1625)Online publication date: 28-Jun-2024
  • (2024)Asistované prostredie pre nevidiacich : bývanie, pracovisko a počítač10.24040/2024.9788055721422Online publication date: 30-May-2024
  • (2024)Internet of robotic things for independent living: Critical analysis and future directionsInternet of Things10.1016/j.iot.2024.10112025(101120)Online publication date: Apr-2024
  • (2024)Leveraging pervasive computing for ambient intelligence: A survey on recent advancements, applications and open challengesComputer Networks10.1016/j.comnet.2023.110156239(110156)Online publication date: Feb-2024
  • (2024)Smart Technologies for Healthcare in Smart CitiesSmart and Healthy Walking10.1007/978-3-031-59443-4_1(1-14)Online publication date: 1-May-2024
  • (2024)Ambient Intelligence (AmI)Explainable Ambient Intelligence (XAmI)10.1007/978-3-031-54935-9_1(1-21)Online publication date: 15-Mar-2024
  • (2023)A Smart Room to Promote Autonomy of Disabled People due to StrokeComputer Systems Science and Engineering10.32604/csse.2023.02579944:1(677-692)Online publication date: 2023
  • (2023)Assessing innovation spillovers from publicly funded R&D and innovation support: Evidence from the UKTechnovation10.1016/j.technovation.2023.102860128(102860)Online publication date: Dec-2023
  • (2023)Assistance from the Ambient Intelligence: Cyber–physical​ system applications in smart buildings for cognitively declined occupantsEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106431123(106431)Online publication date: Aug-2023
  • (2023)An ensemble deep federated learning cyber-threat hunting model for Industrial Internet of ThingsComputer Communications10.1016/j.comcom.2022.11.009198(108-116)Online publication date: Jan-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media