Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of dystrophin cardiomyopathies

Key Points

  • Patients with dystrophinopathies require presymptomatic cardiac treatment to delay the onset and reduce the severity of cardiac involvement

  • Treatment of symptomatic cardiac disease in patients with dystrophinopathies follows established guidelines for the treatment of cardiac disease and includes pharmacological and nonpharmacological measures

  • Nonpharmacological measures for the treatment of cardiac diseases in these patients include the implantation of a pacemaker, cardioverter–defibrillator, cardiac resynchronization therapy system, or ventricular assist devices, or heart transplantation

  • A strong association exists between cardiac and pulmonary disease in patients with dystrophinopathies, and pulmonary function should, therefore, be improved through scoliosis surgery and noninvasive positive pressure ventilation if indicated

Abstract

Treatment of cardiac disease in patients with dystrophinopathies substantially improves outcomes. In this Review, we summarize and discuss findings from the past 20 years and future perspectives for therapeutic options to treat cardiovascular disease in these patients. Their cardiac disease can be subclinical or symptomatic. Presymptomatic treatment with angiotensin-converting-enzyme inhibitors, angiotensin-II-receptor blockers, β-blockers, or mineralocorticoid-receptor antagonists is a well-established method to delay the clinical manifestations of cardiac disease. Treatment of patients with dystrophinopathy and symptomatic cardiac disease, such as heart failure or arrhythmia, follows well-established guidelines for the general treatment of cardiac disease. These treatments improve outcomes, particularly when supported by noncardiovascular measures in the advanced stages of cardiac involvement. Patients with dystrophinopathies and cardiac disease can also benefit from optimal management of scoliosis, noninvasive positive pressure ventilation, and from pain therapy. Molecular therapies for treating cardiac diseases in patients with dystrophinopathies are experimental, but promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms leading to calcium overload in dystrophic muscle cells.
Figure 2: Typical development of progressive cardiac involvement in patients with Duchenne muscular dystrophy or Becker muscular dystrophy.
Figure 3: Summary of treatment options for cardiac disease in patients with dystrophinopathy.
Figure 4: Advantages (left) and disadvantages (right) of steroid therapy for cardiac involvement in patients with Duchenne muscular dystrophy or Becker muscular dystrophy.

Similar content being viewed by others

References

  1. Mosqueira, M., Zeiger, U., Förderer, M., Brinkmeier, H. & Fink, R. H. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med. Res. Rev. 33, 1174–1213 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Fayssoil, A., Nardi, O., Orlikowski, D. & Annane, D. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Fail. Rev. 15, 103–107 (2010).

    Article  PubMed  Google Scholar 

  3. van den Bergen, J. C. et al. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy. J. Neurol. Neurosurg. Psychiatry 85, 92–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Neri, M. et al. The absence of dystrophin brain isoform expression in healthy human heart ventricles explains the pathogenesis of 5′ X-linked dilated cardiomyopathy. BMC Med. Genet. 13, 20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Obler, D. et al. Familial dilated cardiomyopathy secondary to dystrophin splice site mutation. J. Card. Fail. 16, 194–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Passamano, L. et al. Improvement of survival in Duchenne muscular dystrophy: retrospective analysis of 835 patients. Acta Myol. 31, 121–125 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Finsterer, J. & Stöllberger, C. Cardiac involvement in Becker muscular dystrophy. Can. J. Cardiol. 24, 786–792 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Viggiano, E., Picillo, E., Cirillo, A. & Politano, L. Comparison of X-chromosome inactivation in Duchenne muscle/myocardium-manifesting carriers, non-manifesting carriers and related daughters. Clin. Genet. 84, 265–270 (2012).

    Article  PubMed  Google Scholar 

  9. Tidball, J. G. & Villalta, S. A. NO may prompt calcium leakage in dystrophic muscle. Nat. Med. 15, 243–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gentil, C. et al. Variable phenotype of del45-55 Becker patients correlated with nNOSµ mislocalization and RYR1 hypernitrosylation. Hum. Mol. Genet. 21, 3449–3460 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Dick, E. et al. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations. Stem Cells Dev. 15, 2714–2724 (2013).

    Article  CAS  Google Scholar 

  12. Politano, L. & Nigro, G. Treatment of dystrophinopathic cardiomyopathy: review of the literature and personal results. Acta Myol. 31, 24–30 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Roland, E. H. Muscular dystrophy. Pediatr. Rev. 21, 233–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Bushby, K., Mutoni, F. & Bourke, J. P. 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. Neuromuscul. Disord. 13, 166–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Politano, L. et al. Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA 275, 1335–1338 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Romfh, A. & McNally, E. M. Cardiac assessment in Duchenne and Becker muscular dystrophies. Curr. Heart Fail. Rep. 7, 212–218 (2010).

    Article  PubMed  Google Scholar 

  17. Fayssoil, A. & Abasse, S. Cardiac resynchronization therapy in Becker muscular dystrophy: for which patients? Hellenic J. Cardiol. 51, 377–378 (2010).

    PubMed  Google Scholar 

  18. Kesari, A. et al. Somatic mosaicism for Duchenne dystrophy: evidence for genetic normalization mitigating muscle symptoms. Am. J. Med. Genet. A 149A, 1499–1503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melacini, P. et al. Myocardial involvement is very frequent among patients affected with subclinical Becker's muscular dystrophy. Circulation 94, 3168–3175 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Schade van Westrum, S. M. et al. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy. Neurology 77, 62–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Nigro, G. et al. Evaluation of the cardiomyopathy in Becker muscular dystrophy. Muscle Nerve 18, 283–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Finsterer, J. & Stöllberger, C. Spontaneous left ventricular hypertrabeculation in dystrophin duplication based Becker's muscular dystrophy. Herz 26, 477–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Vikent'ev, V. V. & Grinio, L. P. Characteristics of cardiomyopathy in recessive X-linked myodystrophy with a rapid and slow course [Russian]. Ter. Arkh. 79, 49–53 (2007).

    CAS  PubMed  Google Scholar 

  24. Markham, L. W. et al. Revising the cardiac phenotype of Duchenne muscular dystrophy. Neuromuscul. Disord. 16, 699 (2006).

    Article  Google Scholar 

  25. Thomas, T. O., Morgan, T. M., Burnette, W. B. & Markham, L. W. Correlation of heart rate and cardiac dysfunction in Duchenne muscular dystrophy. Pediatr. Cardiol. 33, 1175–1179 (2012).

    Article  PubMed  Google Scholar 

  26. Lin, J. J. et al. Pericardial effusion with cardiac tamponade as a cardiac manifestation of Duchenne muscular dystrophy. Muscle Nerve 40, 476–480 (2009).

    Article  PubMed  Google Scholar 

  27. James, J., Kinnett, K., Wang, Y., Ittenbach, R. & Cripe, L. Electrocardiographic abnormalities in Duchenne muscular dystrophy prior to the onset of cardiac dysfunction. Neuromuscul. Disord. 20, 661 (2010).

    Article  Google Scholar 

  28. Kovick, R. B., Fogelman, A. M., Abbasi, A. D., Peter, J. B. & Pearce, M. L. Echocardiographic evaluation of posterior left ventricular wall motion in muscular dystrophy. Circulation 52, 447–454 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Shabanian, R. et al. Myocardial performance index and atrial ejection force in patients with Duchenne's muscular dystrophy. Echocardiography 28, 1088–1094 (2011).

    Article  PubMed  Google Scholar 

  30. Judge, D. P., Kass, D. A., Thompson, W. R. & Wagner, K. R. Pathophysiology and therapy of cardiac dysfunction in Duchenne muscular dystrophy. Am. J. Cardiovasc. Drugs 11, 287–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Ammendola, E., Russo, V., Politano, L., Santangelo, L. & Calabrò, R. Is heart rate variability a valid parameter to predict sudden death in patients with Becker's muscular dystrophy? Heart 92, 1686–1687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diegoli, M. et al. Diagnostic work-up and risk stratification in X-linked dilated cardiomyopathies caused by dystrophin defects. J. Am. Coll. Cardiol. 58, 925–934 (2011).

    Article  PubMed  Google Scholar 

  33. Fauconnier, J. et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 107, 1559–1564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mourkioti, F. et al. Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat. Cell Biol. 15, 895–904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muntoni, F. Cardiomyopathy in muscular dystrophies. Curr. Opin. Neurol. 16, 577–583 (2003).

    Article  PubMed  Google Scholar 

  36. Chenard, A. A., Becane, H. M., Tertrain, F., de Kermadec, J. M. & Weiss, Y. A. Ventricular arrhythmia in Duchenne muscular dystrophy: prevalence, significance and prognosis. Neuromuscul. Disord. 3, 201–206 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Mavrogeni, S. et al. CMR detects subclinical cardiomyopathy in mother-carriers of Duchenne and Becker muscular dystrophy. JACC Cardiovasc. Imaging 6, 526–528 (2013).

    Article  PubMed  Google Scholar 

  38. Kaspar, R. W., Allen, H. D. & Montanaro, F. Current understanding and management of dilated cardiomyopathy in Duchenne and Becker muscular dystrophy. J. Am. Acad. Nurse Pract. 21, 241–249 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yilmaz, A. et al. Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach. J. Cardiovasc. Magn. Reson. 10, 50 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stöllberger, C. & Finsterer, J. Prognosis of Duchenne/Becker muscular dystrophy with noncompaction is worse than without noncompaction. Int. J. Cardiol. 168, 2915–2916 (2013).

    Article  PubMed  Google Scholar 

  41. Matthews, D. J. et al. Use of corticosteroids in a population-based cohort of boys with Duchenne and Becker muscular dystrophy. J. Child Neurol. 25, 1319–1324 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wollinsky, K. H., Kutter, B. & Geiger, P. M. Long-term ventilation of patients with Duchenne muscular dystrophy: experiences at the Neuromuscular Centre Ulm. Acta Myol. 31, 170–178 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Colan, S. D. Evolving therapeutic strategies for dystrophinopathies: potential for conflict between cardiac and skeletal needs. Circulation 112, 2756–2758 (2005).

    Article  PubMed  Google Scholar 

  44. Townsend, D., Yasuda, S., Li, S., Chamberlain, J. S. & Metzger, J. M. Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol. Ther. 16, 832–835 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman, E. P. et al. Novel approaches to corticosteroid treatment in Duchenne muscular dystrophy. Phys. Med. Rehabil. Clin. N. Am. 23, 821–828 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Markham, L. W., Kinnett, K., Wong, B. L., Woodrow Benson, D. & Cripe, L. H. Corticosteroid treatment retards development of ventricular dysfunction in Duchenne muscular dystrophy. Neuromuscul. Disord. 18, 365–370 (2008).

    Article  PubMed  Google Scholar 

  47. Ricotti, V. et al. Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 84, 698–705 (2013).

    Article  PubMed  Google Scholar 

  48. Dooley, J. M., Bobbitt, S. A. & Cummings, E. A. The impact of deflazacort on puberty in Duchenne muscular dystrophy. Pediatr. Neurol. 49, 292–293 (2013).

    Article  PubMed  Google Scholar 

  49. Mayo, A. L., Craven, B. C., McAdam, L. C. & Biggar, W. D. Bone health in boys with Duchenne muscular dystrophy on long-term daily deflazacort therapy. Neuromuscul. Disord. 22, 1040–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. McAdam, L. C., Mayo, A. L., Alman, B. A. & Biggar, W. D. The Canadian experience with long-term deflazacort treatment in Duchenne muscular dystrophy. Acta Myol. 31, 16–20 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Rutter, M. M. et al. Growth hormone treatment in boys with Duchenne muscular dystrophy and glucocorticoid-induced growth failure. Neuromuscul. Disord. 22, 1046–1056 (2012).

    Article  PubMed  Google Scholar 

  52. Ricotti, V., Ridout, D. A. & Muntoni, F. Steroids in Duchenne muscular dystrophy. Neuromuscul. Disord. 23, 696–697 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Griggs, R. C. et al. Corticosteroids in Duchenne muscular dystrophy: major variations in practice. Muscle Nerve 48, 27–31 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Dec, G. W. Steroid therapy effectively delays Duchenne's cardiomyopathy. J. Am. Coll. Cardiol. 61, 955–956 (2013).

    Article  PubMed  Google Scholar 

  55. Mavrogeni, S. et al. Effect of deflazacort on cardiac and sternocleidomastoid muscles in Duchenne muscular dystrophy: a magnetic resonance imaging study. Eur. J. Paediatr. Neurol. 13, 34–40 (2009).

    Article  PubMed  Google Scholar 

  56. Silverside, C. K., Webb, G. D., Harris, V. A. & Biggar, D. W. Effects of deflazacort on left ventricular function in patients with Duchenne muscular dystrophy. Am. J. Cardiol. 91, 769–772 (2003).

    Article  CAS  Google Scholar 

  57. Markham, L. W. et al. Steroid therapy and cardiac function in Duchenne muscular dystrophy. Pediatr. Cardiol. 26, 768–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Houde, S. et al. Deflazacort use in Duchenne muscular dystrophy: an 8-year follow-up. Pediatr. Neurol. 38, 200–206 (2008).

    Article  PubMed  Google Scholar 

  59. Barber, B. J. et al. Oral corticosteroids and onset of cardiomyopathy in Duchenne muscular dystrophy. J. Pediatr. 163, 1080–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Schram, G. et al. All-cause mortality and cardiovascular outcomes with prophylactic steroid therapy in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 61, 948–954 (2013).

    Article  PubMed  Google Scholar 

  61. Bauer, R., Straub, V., Blain, A., Bushby, K. & MacGowan, G. A. Contrasting effects of steroids and angiotensin-converting-enzyme inhibitors in a mouse model of dystrophin-deficient cardiomyopathy. Eur. J. Heart Fail. 11, 463–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Bauer, R., Macgowan, G. A., Blain, A., Bushby, K. & Straub, V. Steroid treatment causes deterioration of myocardial function in the δ-sarcoglycan-deficient mouse model for dilated cardiomyopathy. Cardiovasc. Res. 79, 652–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Rotundo, I. L. et al. Worsening of cardiomyopathy using deflazacort in an animal model rescued by gene therapy. PLoS ONE 6, e24729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Buyse, G. M., Goemans, N., van den Hauwe, M. & Meier, T. Effects of glucocorticoids and idebenone on respiratory function in patients with duchenne muscular dystrophy. Pediatr. Pulmonol. 48, 912–920 (2013).

    Article  PubMed  Google Scholar 

  65. Duboc, D. et al. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 45, 855–857 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Rafael-Fortney, J. A. et al. Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice. Circulation 124, 582–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cozzoli, A. et al. Enalapril treatment discloses an early role of angiotensin II in inflammation- and oxidative stress-related muscle damage in dystrophic mdx mice. Pharmacol. Res. 64, 482–492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramaciotti, C. et al. Left ventricular function and response to enalapril in patients with Duchenne muscular dystrophy during the second decade of life. Am. J. Cardiol. 98, 825–827 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Duboc, D. et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years' follow-up. Am. Heart J. 154, 596–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Kwon, H. W. et al. The effect of enalapril and carvedilol on left ventricular dysfunction in middle childhood and adolescent patients with muscular dystrophy. Korean Circ. J. 42, 184–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Spurney, C. F. et al. Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice. J. Cardiovasc. Pharmacol. Ther. 16, 87–95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bish, L. T. et al. Chronic losartan administration reduces mortality and preserves cardiac but not skeletal muscle function in dystrophic mice. PLoS ONE 6, e20856 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blain, A. et al. Beta-blockers, left and right ventricular function, and in-vivo calcium influx in muscular dystrophy cardiomyopathy. PLoS ONE 8, e57260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kajimoto, H. et al. Beta-blocker therapy for cardiac dysfunction in patients with muscular dystrophy. Circ. J. 70, 991–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ogata, H., Ishikawa, Y., Ishikawa, Y. & Minami, R. Beneficial effects of beta-blockers and angiotensin-converting enzyme inhibitors in Duchenne muscular dystrophy. J. Cardiol. 53, 72–78 (2009).

    Article  PubMed  Google Scholar 

  76. Finsterer, J., Stöllberger, C. & Holinski-Feder, E. Recovery of systolic dysfunction in Duchenne muscular dystrophy due to the point mutation c.4213C >T. Cardiology 117, 265–267 (2010).

    Article  PubMed  Google Scholar 

  77. Hor, K. N. et al. Presence of mechanical dyssynchrony in Duchenne muscular dystrophy. J. Cardiovasc. Magn. Reson. 13, 12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zanotti, S., Gibertini, S., Savadori, P., Mantegazza, R. & Mora, M. Duchenne muscular dystrophy fibroblast nodules: a cell-based assay for screening anti-fibrotic agents. Cell Tissue Res. 352, 659–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Rafael-Fortney, J. A. et al. Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice. Circulation 124, 582–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barison, A. et al. Cardiac magnetic resonance imaging and management of dilated cardiomyopathy in a Duchenne muscular dystrophy manifesting carrier. J. Neurol. 256, 283–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Weber, M. A. et al. Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscledegeneration. J. Neurol. 259, 2385–2392 (2012).

    Article  PubMed  Google Scholar 

  82. Lehmann-Horn, F. et al. Rationale for treating oedema in Duchenne muscular dystrophy with eplerenone. Acta Myol. 31, 31–39 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. McMurray, J. J. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 14, 803–869 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Ishikawa, Y., Bach, J. R. & Minami, R. Cardioprotection for Duchenne's muscular dystrophy. Am. Heart J. 137, 895–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Rhodes, J. et al. Safety and efficacy of carvedilol therapy for patients with dilated cardiomyopathy secondary to muscular dystrophy. Pediatr. Cardiol. 29, 343–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Matsumura, T., Tamura, T., Kuru, S., Kikuchi, Y. & Kawai, M. Carvedilol can prevent cardiac events in Duchenne muscular dystrophy. Intern. Med. 49, 1357–1363 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Saito, T., Matsumura, T., Miyai, I., Nozaki, S. & Shinno, S. Carvedilol effectiveness for left ventricular-insufficient patients with Duchenne muscular dystrophy [Japanese]. Rinsho Shinkeigaku 41, 691–694 (2001).

    CAS  PubMed  Google Scholar 

  88. Finsterer, J., Stöllberger, C. & Berger, E. Beneficial effect of ivabradine in dilated cardiomyopathy from Becker muscular dystrophy. Herz 37, 702–705 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Cripe, L. et al. Cardiac transplantation in Duchenne muscular dystrophy: a case report. Neuromuscul. Disord. 21, 645 (2011).

    Article  Google Scholar 

  90. Matsumura, T., Saito, T., Miyai, I., Nozaki, S. & Kang, J. Effective milrinone therapy to a Duchenne muscular dystrophy patient with advanced congestive heart failure [Japanese]. Rinsho Shinkeigaku 39, 643–648 (1999).

    CAS  PubMed  Google Scholar 

  91. Fayssoil, A., Orlikowski, D., Nardi, O. & Annane, D. Pacemaker implantation for sinus node dysfunction in a young patient with Duchenne muscular dystrophy. Congest. Heart Fail. 16, 127–128 (2010).

    Article  PubMed  Google Scholar 

  92. Kuru, S., Tanahashi, T., Matsumoto, S., Kitamura, T. & Konagaya, M. Complete atrioventricular block in Duchenne muscular dystrophy [Japanese]. Rinsho Shinkeigaku 52, 685–687 (2012).

    Article  PubMed  Google Scholar 

  93. Fayssoil, A., Orlikowski, D., Nardi, O. & Annane, D. Complete atrioventricular block in Duchenne muscular dystrophy. Europace 10, 1351–1352 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Takano, N., Honke, K., Hasui, M., Ohno, I. & Takemura, H. A case of pacemaker implantation for complete atrioventricular block associated with Duchenne muscular dystrophy [Japanese]. No To Hattatsu 29, 476–480 (1997).

    CAS  PubMed  Google Scholar 

  95. Walcher, T. et al. Cardiac involvement in a female carrier of Duchenne muscular dystrophy. Int. J. Cardiol. 138, 302–305 (2010).

    Article  PubMed  Google Scholar 

  96. Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 61, e6–e75 (2013).

    Article  PubMed  Google Scholar 

  97. Andrikopoulos, G. et al. Cardiac resynchronization therapy in Becker muscular dystrophy. Hellenic J. Cardiol. 54, 227–229 (2013).

    PubMed  Google Scholar 

  98. Stöllberger, C. & Finsterer, J. Left ventricular synchronization by biventricular pacing in Becker muscular dystrophy as assessed by tissue Doppler imaging. Heart Lung 34, 317–320 (2005).

    Article  PubMed  Google Scholar 

  99. Davies, J. E. et al. Cardiomyopathy in a carrier of Duchenne's muscular dystrophy. J. Heart Lung Transplant. 20, 781–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Smith, M. C. et al. CardioWest total artificial heart in a moribund adolescent with left ventricular thrombi. Ann. Thorac. Surg. 80, 1490–1492 (2005).

    Article  PubMed  Google Scholar 

  101. Webb, S. T., Patil, V. & Vuylsteke, A. Anaesthesia for non-cardiac surgery in patient with Becker's muscular dystrophy supported with a left ventricular assist device. Eur. J. Anaesthesiol. 24, 640–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Leprince, P. et al. Successful bridge to transplantation in a patient with Becker muscular dystrophy-associated cardiomyopathy. J. Heart Lung Transplant. 21, 822–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Amodeo, A. & Adorisio, R. Left ventricular assist device in Duchenne cardiomyopathy: can we change the natural history of cardiac disease? Int. J. Cardiol. 161, e43 (2012).

    Article  PubMed  Google Scholar 

  104. Iodice, F., Testa, G., Amodeo, A. & Cogo, P. Inappropriate use of neurally adjusted ventilator assist. BMJ Case Rep. 2012, bcr1020115029 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Finsterer, J., Bittner, R. E. & Grimm, M. Cardiac involvement in Becker's muscular dystrophy, necessitating heart transplantation, 6 years before apparent skeletal muscle involvement. Neuromuscul. Disord. 9, 598–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Melacini, P. et al. Heart transplantation in patients with inherited myopathies associated with end-stage cardiomyopathy: molecular and biochemical defects on cardiac and skeletal muscle. Transplant. Proc. 33, 1596–1599 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Grande, A. M., Rinaldi, M., Pasquino, S., D'Armini, A. M. & Viganò, M. Heart transplantation in X-linked dilated cardiomyopathy. Ital. Heart J. 3, 476–478 (2002).

    PubMed  Google Scholar 

  108. Finder, J. D. et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am. J. Respir. Crit. Care Med. 170, 456–465 (2004).

    Article  PubMed  Google Scholar 

  109. Kieny, P. et al. Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011. Ann. Phys. Rehabil. Med. 56, 443–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Manzur, A. Y., Kinali, M. & Muntoni, F. Update on the management of Duchenne muscular dystrophy. Arch. Dis. Child. 93, 986–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Bach, J. R. & Martinez, D. Duchenne muscular dystrophy: continuous noninvasive ventilatory support prolongs survival. Respir. Care 56, 744–750 (2011).

    Article  PubMed  Google Scholar 

  112. Bushby, K. et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 9, 177–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Muntoni, F., Bushby, K. & Manzur, A. Y. Muscular Dystrophy Campaign funded workshop on management of scoliosis in Duchenne muscular dystrophy 24 January 2005 London, UK. Neuromuscul. Disord. 16, 210–219 (2006).

    Article  PubMed  Google Scholar 

  114. Cripe, L. H. & Tobias, J. D. Cardiac considerations in the operative management of the patient with Duchenne or Becker muscular dystrophy. Paediatr. Anaesth. 23, 777–784 (2013).

    Article  PubMed  Google Scholar 

  115. Rodino-Klapac, L. R., Mendell, J. R. & Sahenk, Z. Update on the treatment of Duchenne muscular dystrophy. Curr. Neurol. Neurosci. Rep. 13, 332 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Verhaart, I. E. & Aartsma-Rus, A. Gene therapy for Duchenne muscular dystrophy. Curr. Opin. Neurol. 25, 588–596 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Anthony, K. et al. Exon skipping quantification by quantitative reverse-transcription polymerase chain reaction in Duchenne muscular dystrophy patients treated with the antisense oligomer eteplirsen. Hum. Gene Ther. Methods 23, 336–345 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Koo, T. & Wood, M. J. Clinical trials using antisense oligonucleotides in Duchenne muscular dystrophy. Hum. Gene Ther. 24, 479–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. van Deutekom, J. C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357, 2677–2686 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Kinali, M. et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 8, 918–928 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Betts, C. et al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol. Ther. Nucleic Acids 1, e38 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Bish, L. T. et al. Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol. Ther. 20, 580–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Wu, B. et al. Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Ther. 17, 132–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Yin, H. et al. Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol. Ther. 19, 1295–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Malerba, A., Boldrin, L. & Dickson, G. Long-term systemic administration of unconjugated morpholino oligomers for therapeutic expression of dystrophin by exon skipping in skeletal muscle: implications for cardiac muscle integrity. Nucleic Acid Ther. 21, 293–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Flanigan, K. M. et al. Anti-dystrophin T-cell responses in Duchenne muscular dystrophy: prevalence and a glucocorticoid treatment effect. Hum. Gene Ther. 24, 797–806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schinkel, S. et al. Long-term preservation of cardiac structure and function after adeno-associated virus serotype 9-mediated microdystrophin gene transfer in mdx mice. Hum. Gene Ther. 23, 566–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Kayali, R. et al. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum. Mol. Genet. 21, 4007–4020 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wagner, K. R. et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann. Neurol. 49, 706–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Vianello, S. et al. Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J. 27, 2256–2269 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Fanin, M., Melacini, P., Angelini, C. & Danieli, G. A. Could utrophin rescue the myocardium of patients with dystrophin gene mutations? J. Mol. Cell. Cardiol. 31, 1501–1508 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Chun, J. L., O'Brien, R., Song, M. H., Wondrasch, B. F. & Berry, S. E. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn−/− but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl. Med. 2, 68–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Su, J. B. et al. Bradykinin restores left ventricular function, sarcomeric protein phosphorylation, and e/nNOS levels in dogs with Duchenne muscular dystrophy cardiomyopathy. Cardiovasc. Res. 95, 86–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Chamberlain, J. S. ACE inhibitor bulks up muscle. Nat. Med. 13, 125–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Dahiya, S. et al. Osteopontin-stimulated expression of matrix metalloproteinase-9 causes cardiomyopathy in the mdx model of Duchenne muscular dystrophy. J. Immunol. 187, 2723–2731 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Townsend, D. et al. Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. J. Clin. Invest. 120, 1140–1150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kuno, A. et al. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. J. Biol. Chem. 288, 5963–5972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hori, Y. S. et al. Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy. J. Pharmacol. Exp. Ther. 338, 784–794 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Adamo, C. M. et al. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 107, 19079–19083 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Buyse, G. M. et al. Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. Eur. Heart J. 30, 116–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. de Oliveira Moreira, D. et al. Suramin attenuates dystrophin-deficient cardiomyopathy in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 48, 911–919 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Bostick, B. et al. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. J. Mol. Cell. Cardiol. 53, 217–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kleinschmidt, J. A., Katus, H. A. & Müller, O. J. Long-term preservation of cardiac structure and function after adeno-associated virus serotype 9-mediated microdystrophin gene transfer in mdx mice. Hum. Gene Ther. 23, 566–575 (2012).

    Article  PubMed  CAS  Google Scholar 

  144. Vitiello, C. et al. Disease rescue and increased lifespan in a model of cardiomyopathy and muscular dystrophy by combined AAV treatments. PLoS ONE 4, e5051 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kimura, S. et al. A novel approach to identify Duchenne muscular dystrophy patients for aminoglycoside antibiotics therapy. Brain Dev. 27, 400–405 (2005).

    Article  PubMed  Google Scholar 

  146. Beytía Mde, L., Vry, J. & Kirschner, J. Drug treatment of Duchenne muscular dystrophy: available evidence and perspectives. Acta Myol. 31, 4–8 (2012).

    PubMed  Google Scholar 

  147. Delfín, D. A. et al. Sustaining cardiac claudin-5 levels prevents functional hallmarks of cardiomyopathy in a muscular dystrophy mouse model. Mol. Ther. 20, 1378–1383 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, and wrote and reviewed the manuscript.

Corresponding author

Correspondence to Josef Finsterer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finsterer, J., Cripe, L. Treatment of dystrophin cardiomyopathies. Nat Rev Cardiol 11, 168–179 (2014). https://doi.org/10.1038/nrcardio.2013.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing