Key Points
-
Patients with dystrophinopathies require presymptomatic cardiac treatment to delay the onset and reduce the severity of cardiac involvement
-
Treatment of symptomatic cardiac disease in patients with dystrophinopathies follows established guidelines for the treatment of cardiac disease and includes pharmacological and nonpharmacological measures
-
Nonpharmacological measures for the treatment of cardiac diseases in these patients include the implantation of a pacemaker, cardioverter–defibrillator, cardiac resynchronization therapy system, or ventricular assist devices, or heart transplantation
-
A strong association exists between cardiac and pulmonary disease in patients with dystrophinopathies, and pulmonary function should, therefore, be improved through scoliosis surgery and noninvasive positive pressure ventilation if indicated
Abstract
Treatment of cardiac disease in patients with dystrophinopathies substantially improves outcomes. In this Review, we summarize and discuss findings from the past 20 years and future perspectives for therapeutic options to treat cardiovascular disease in these patients. Their cardiac disease can be subclinical or symptomatic. Presymptomatic treatment with angiotensin-converting-enzyme inhibitors, angiotensin-II-receptor blockers, β-blockers, or mineralocorticoid-receptor antagonists is a well-established method to delay the clinical manifestations of cardiac disease. Treatment of patients with dystrophinopathy and symptomatic cardiac disease, such as heart failure or arrhythmia, follows well-established guidelines for the general treatment of cardiac disease. These treatments improve outcomes, particularly when supported by noncardiovascular measures in the advanced stages of cardiac involvement. Patients with dystrophinopathies and cardiac disease can also benefit from optimal management of scoliosis, noninvasive positive pressure ventilation, and from pain therapy. Molecular therapies for treating cardiac diseases in patients with dystrophinopathies are experimental, but promising.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mosqueira, M., Zeiger, U., Förderer, M., Brinkmeier, H. & Fink, R. H. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med. Res. Rev. 33, 1174–1213 (2013).
Fayssoil, A., Nardi, O., Orlikowski, D. & Annane, D. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Fail. Rev. 15, 103–107 (2010).
van den Bergen, J. C. et al. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy. J. Neurol. Neurosurg. Psychiatry 85, 92–98 (2014).
Neri, M. et al. The absence of dystrophin brain isoform expression in healthy human heart ventricles explains the pathogenesis of 5′ X-linked dilated cardiomyopathy. BMC Med. Genet. 13, 20 (2012).
Obler, D. et al. Familial dilated cardiomyopathy secondary to dystrophin splice site mutation. J. Card. Fail. 16, 194–199 (2010).
Passamano, L. et al. Improvement of survival in Duchenne muscular dystrophy: retrospective analysis of 835 patients. Acta Myol. 31, 121–125 (2012).
Finsterer, J. & Stöllberger, C. Cardiac involvement in Becker muscular dystrophy. Can. J. Cardiol. 24, 786–792 (2008).
Viggiano, E., Picillo, E., Cirillo, A. & Politano, L. Comparison of X-chromosome inactivation in Duchenne muscle/myocardium-manifesting carriers, non-manifesting carriers and related daughters. Clin. Genet. 84, 265–270 (2012).
Tidball, J. G. & Villalta, S. A. NO may prompt calcium leakage in dystrophic muscle. Nat. Med. 15, 243–244 (2009).
Gentil, C. et al. Variable phenotype of del45-55 Becker patients correlated with nNOSµ mislocalization and RYR1 hypernitrosylation. Hum. Mol. Genet. 21, 3449–3460 (2012).
Dick, E. et al. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations. Stem Cells Dev. 15, 2714–2724 (2013).
Politano, L. & Nigro, G. Treatment of dystrophinopathic cardiomyopathy: review of the literature and personal results. Acta Myol. 31, 24–30 (2012).
Roland, E. H. Muscular dystrophy. Pediatr. Rev. 21, 233–237 (2000).
Bushby, K., Mutoni, F. & Bourke, J. P. 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. Neuromuscul. Disord. 13, 166–172 (2003).
Politano, L. et al. Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA 275, 1335–1338 (1996).
Romfh, A. & McNally, E. M. Cardiac assessment in Duchenne and Becker muscular dystrophies. Curr. Heart Fail. Rep. 7, 212–218 (2010).
Fayssoil, A. & Abasse, S. Cardiac resynchronization therapy in Becker muscular dystrophy: for which patients? Hellenic J. Cardiol. 51, 377–378 (2010).
Kesari, A. et al. Somatic mosaicism for Duchenne dystrophy: evidence for genetic normalization mitigating muscle symptoms. Am. J. Med. Genet. A 149A, 1499–1503 (2009).
Melacini, P. et al. Myocardial involvement is very frequent among patients affected with subclinical Becker's muscular dystrophy. Circulation 94, 3168–3175 (1996).
Schade van Westrum, S. M. et al. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy. Neurology 77, 62–66 (2011).
Nigro, G. et al. Evaluation of the cardiomyopathy in Becker muscular dystrophy. Muscle Nerve 18, 283–291 (1995).
Finsterer, J. & Stöllberger, C. Spontaneous left ventricular hypertrabeculation in dystrophin duplication based Becker's muscular dystrophy. Herz 26, 477–481 (2001).
Vikent'ev, V. V. & Grinio, L. P. Characteristics of cardiomyopathy in recessive X-linked myodystrophy with a rapid and slow course [Russian]. Ter. Arkh. 79, 49–53 (2007).
Markham, L. W. et al. Revising the cardiac phenotype of Duchenne muscular dystrophy. Neuromuscul. Disord. 16, 699 (2006).
Thomas, T. O., Morgan, T. M., Burnette, W. B. & Markham, L. W. Correlation of heart rate and cardiac dysfunction in Duchenne muscular dystrophy. Pediatr. Cardiol. 33, 1175–1179 (2012).
Lin, J. J. et al. Pericardial effusion with cardiac tamponade as a cardiac manifestation of Duchenne muscular dystrophy. Muscle Nerve 40, 476–480 (2009).
James, J., Kinnett, K., Wang, Y., Ittenbach, R. & Cripe, L. Electrocardiographic abnormalities in Duchenne muscular dystrophy prior to the onset of cardiac dysfunction. Neuromuscul. Disord. 20, 661 (2010).
Kovick, R. B., Fogelman, A. M., Abbasi, A. D., Peter, J. B. & Pearce, M. L. Echocardiographic evaluation of posterior left ventricular wall motion in muscular dystrophy. Circulation 52, 447–454 (1975).
Shabanian, R. et al. Myocardial performance index and atrial ejection force in patients with Duchenne's muscular dystrophy. Echocardiography 28, 1088–1094 (2011).
Judge, D. P., Kass, D. A., Thompson, W. R. & Wagner, K. R. Pathophysiology and therapy of cardiac dysfunction in Duchenne muscular dystrophy. Am. J. Cardiovasc. Drugs 11, 287–294 (2011).
Ammendola, E., Russo, V., Politano, L., Santangelo, L. & Calabrò, R. Is heart rate variability a valid parameter to predict sudden death in patients with Becker's muscular dystrophy? Heart 92, 1686–1687 (2006).
Diegoli, M. et al. Diagnostic work-up and risk stratification in X-linked dilated cardiomyopathies caused by dystrophin defects. J. Am. Coll. Cardiol. 58, 925–934 (2011).
Fauconnier, J. et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 107, 1559–1564 (2010).
Mourkioti, F. et al. Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat. Cell Biol. 15, 895–904 (2013).
Muntoni, F. Cardiomyopathy in muscular dystrophies. Curr. Opin. Neurol. 16, 577–583 (2003).
Chenard, A. A., Becane, H. M., Tertrain, F., de Kermadec, J. M. & Weiss, Y. A. Ventricular arrhythmia in Duchenne muscular dystrophy: prevalence, significance and prognosis. Neuromuscul. Disord. 3, 201–206 (1993).
Mavrogeni, S. et al. CMR detects subclinical cardiomyopathy in mother-carriers of Duchenne and Becker muscular dystrophy. JACC Cardiovasc. Imaging 6, 526–528 (2013).
Kaspar, R. W., Allen, H. D. & Montanaro, F. Current understanding and management of dilated cardiomyopathy in Duchenne and Becker muscular dystrophy. J. Am. Acad. Nurse Pract. 21, 241–249 (2009).
Yilmaz, A. et al. Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach. J. Cardiovasc. Magn. Reson. 10, 50 (2008).
Stöllberger, C. & Finsterer, J. Prognosis of Duchenne/Becker muscular dystrophy with noncompaction is worse than without noncompaction. Int. J. Cardiol. 168, 2915–2916 (2013).
Matthews, D. J. et al. Use of corticosteroids in a population-based cohort of boys with Duchenne and Becker muscular dystrophy. J. Child Neurol. 25, 1319–1324 (2010).
Wollinsky, K. H., Kutter, B. & Geiger, P. M. Long-term ventilation of patients with Duchenne muscular dystrophy: experiences at the Neuromuscular Centre Ulm. Acta Myol. 31, 170–178 (2012).
Colan, S. D. Evolving therapeutic strategies for dystrophinopathies: potential for conflict between cardiac and skeletal needs. Circulation 112, 2756–2758 (2005).
Townsend, D., Yasuda, S., Li, S., Chamberlain, J. S. & Metzger, J. M. Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol. Ther. 16, 832–835 (2008).
Hoffman, E. P. et al. Novel approaches to corticosteroid treatment in Duchenne muscular dystrophy. Phys. Med. Rehabil. Clin. N. Am. 23, 821–828 (2012).
Markham, L. W., Kinnett, K., Wong, B. L., Woodrow Benson, D. & Cripe, L. H. Corticosteroid treatment retards development of ventricular dysfunction in Duchenne muscular dystrophy. Neuromuscul. Disord. 18, 365–370 (2008).
Ricotti, V. et al. Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 84, 698–705 (2013).
Dooley, J. M., Bobbitt, S. A. & Cummings, E. A. The impact of deflazacort on puberty in Duchenne muscular dystrophy. Pediatr. Neurol. 49, 292–293 (2013).
Mayo, A. L., Craven, B. C., McAdam, L. C. & Biggar, W. D. Bone health in boys with Duchenne muscular dystrophy on long-term daily deflazacort therapy. Neuromuscul. Disord. 22, 1040–1045 (2012).
McAdam, L. C., Mayo, A. L., Alman, B. A. & Biggar, W. D. The Canadian experience with long-term deflazacort treatment in Duchenne muscular dystrophy. Acta Myol. 31, 16–20 (2012).
Rutter, M. M. et al. Growth hormone treatment in boys with Duchenne muscular dystrophy and glucocorticoid-induced growth failure. Neuromuscul. Disord. 22, 1046–1056 (2012).
Ricotti, V., Ridout, D. A. & Muntoni, F. Steroids in Duchenne muscular dystrophy. Neuromuscul. Disord. 23, 696–697 (2013).
Griggs, R. C. et al. Corticosteroids in Duchenne muscular dystrophy: major variations in practice. Muscle Nerve 48, 27–31 (2013).
Dec, G. W. Steroid therapy effectively delays Duchenne's cardiomyopathy. J. Am. Coll. Cardiol. 61, 955–956 (2013).
Mavrogeni, S. et al. Effect of deflazacort on cardiac and sternocleidomastoid muscles in Duchenne muscular dystrophy: a magnetic resonance imaging study. Eur. J. Paediatr. Neurol. 13, 34–40 (2009).
Silverside, C. K., Webb, G. D., Harris, V. A. & Biggar, D. W. Effects of deflazacort on left ventricular function in patients with Duchenne muscular dystrophy. Am. J. Cardiol. 91, 769–772 (2003).
Markham, L. W. et al. Steroid therapy and cardiac function in Duchenne muscular dystrophy. Pediatr. Cardiol. 26, 768–771 (2005).
Houde, S. et al. Deflazacort use in Duchenne muscular dystrophy: an 8-year follow-up. Pediatr. Neurol. 38, 200–206 (2008).
Barber, B. J. et al. Oral corticosteroids and onset of cardiomyopathy in Duchenne muscular dystrophy. J. Pediatr. 163, 1080–1084 (2013).
Schram, G. et al. All-cause mortality and cardiovascular outcomes with prophylactic steroid therapy in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 61, 948–954 (2013).
Bauer, R., Straub, V., Blain, A., Bushby, K. & MacGowan, G. A. Contrasting effects of steroids and angiotensin-converting-enzyme inhibitors in a mouse model of dystrophin-deficient cardiomyopathy. Eur. J. Heart Fail. 11, 463–471 (2009).
Bauer, R., Macgowan, G. A., Blain, A., Bushby, K. & Straub, V. Steroid treatment causes deterioration of myocardial function in the δ-sarcoglycan-deficient mouse model for dilated cardiomyopathy. Cardiovasc. Res. 79, 652–661 (2008).
Rotundo, I. L. et al. Worsening of cardiomyopathy using deflazacort in an animal model rescued by gene therapy. PLoS ONE 6, e24729 (2011).
Buyse, G. M., Goemans, N., van den Hauwe, M. & Meier, T. Effects of glucocorticoids and idebenone on respiratory function in patients with duchenne muscular dystrophy. Pediatr. Pulmonol. 48, 912–920 (2013).
Duboc, D. et al. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 45, 855–857 (2005).
Rafael-Fortney, J. A. et al. Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice. Circulation 124, 582–588 (2011).
Cozzoli, A. et al. Enalapril treatment discloses an early role of angiotensin II in inflammation- and oxidative stress-related muscle damage in dystrophic mdx mice. Pharmacol. Res. 64, 482–492 (2011).
Ramaciotti, C. et al. Left ventricular function and response to enalapril in patients with Duchenne muscular dystrophy during the second decade of life. Am. J. Cardiol. 98, 825–827 (2006).
Duboc, D. et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years' follow-up. Am. Heart J. 154, 596–602 (2007).
Kwon, H. W. et al. The effect of enalapril and carvedilol on left ventricular dysfunction in middle childhood and adolescent patients with muscular dystrophy. Korean Circ. J. 42, 184–191 (2012).
Spurney, C. F. et al. Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice. J. Cardiovasc. Pharmacol. Ther. 16, 87–95 (2011).
Bish, L. T. et al. Chronic losartan administration reduces mortality and preserves cardiac but not skeletal muscle function in dystrophic mice. PLoS ONE 6, e20856 (2011).
Blain, A. et al. Beta-blockers, left and right ventricular function, and in-vivo calcium influx in muscular dystrophy cardiomyopathy. PLoS ONE 8, e57260 (2013).
Kajimoto, H. et al. Beta-blocker therapy for cardiac dysfunction in patients with muscular dystrophy. Circ. J. 70, 991–994 (2006).
Ogata, H., Ishikawa, Y., Ishikawa, Y. & Minami, R. Beneficial effects of beta-blockers and angiotensin-converting enzyme inhibitors in Duchenne muscular dystrophy. J. Cardiol. 53, 72–78 (2009).
Finsterer, J., Stöllberger, C. & Holinski-Feder, E. Recovery of systolic dysfunction in Duchenne muscular dystrophy due to the point mutation c.4213C >T. Cardiology 117, 265–267 (2010).
Hor, K. N. et al. Presence of mechanical dyssynchrony in Duchenne muscular dystrophy. J. Cardiovasc. Magn. Reson. 13, 12 (2011).
Zanotti, S., Gibertini, S., Savadori, P., Mantegazza, R. & Mora, M. Duchenne muscular dystrophy fibroblast nodules: a cell-based assay for screening anti-fibrotic agents. Cell Tissue Res. 352, 659–670 (2013).
Rafael-Fortney, J. A. et al. Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice. Circulation 124, 582–588 (2011).
Barison, A. et al. Cardiac magnetic resonance imaging and management of dilated cardiomyopathy in a Duchenne muscular dystrophy manifesting carrier. J. Neurol. 256, 283–284 (2009).
Weber, M. A. et al. Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscledegeneration. J. Neurol. 259, 2385–2392 (2012).
Lehmann-Horn, F. et al. Rationale for treating oedema in Duchenne muscular dystrophy with eplerenone. Acta Myol. 31, 31–39 (2012).
McMurray, J. J. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 14, 803–869 (2012).
Ishikawa, Y., Bach, J. R. & Minami, R. Cardioprotection for Duchenne's muscular dystrophy. Am. Heart J. 137, 895–902 (1999).
Rhodes, J. et al. Safety and efficacy of carvedilol therapy for patients with dilated cardiomyopathy secondary to muscular dystrophy. Pediatr. Cardiol. 29, 343–351 (2008).
Matsumura, T., Tamura, T., Kuru, S., Kikuchi, Y. & Kawai, M. Carvedilol can prevent cardiac events in Duchenne muscular dystrophy. Intern. Med. 49, 1357–1363 (2010).
Saito, T., Matsumura, T., Miyai, I., Nozaki, S. & Shinno, S. Carvedilol effectiveness for left ventricular-insufficient patients with Duchenne muscular dystrophy [Japanese]. Rinsho Shinkeigaku 41, 691–694 (2001).
Finsterer, J., Stöllberger, C. & Berger, E. Beneficial effect of ivabradine in dilated cardiomyopathy from Becker muscular dystrophy. Herz 37, 702–705 (2012).
Cripe, L. et al. Cardiac transplantation in Duchenne muscular dystrophy: a case report. Neuromuscul. Disord. 21, 645 (2011).
Matsumura, T., Saito, T., Miyai, I., Nozaki, S. & Kang, J. Effective milrinone therapy to a Duchenne muscular dystrophy patient with advanced congestive heart failure [Japanese]. Rinsho Shinkeigaku 39, 643–648 (1999).
Fayssoil, A., Orlikowski, D., Nardi, O. & Annane, D. Pacemaker implantation for sinus node dysfunction in a young patient with Duchenne muscular dystrophy. Congest. Heart Fail. 16, 127–128 (2010).
Kuru, S., Tanahashi, T., Matsumoto, S., Kitamura, T. & Konagaya, M. Complete atrioventricular block in Duchenne muscular dystrophy [Japanese]. Rinsho Shinkeigaku 52, 685–687 (2012).
Fayssoil, A., Orlikowski, D., Nardi, O. & Annane, D. Complete atrioventricular block in Duchenne muscular dystrophy. Europace 10, 1351–1352 (2008).
Takano, N., Honke, K., Hasui, M., Ohno, I. & Takemura, H. A case of pacemaker implantation for complete atrioventricular block associated with Duchenne muscular dystrophy [Japanese]. No To Hattatsu 29, 476–480 (1997).
Walcher, T. et al. Cardiac involvement in a female carrier of Duchenne muscular dystrophy. Int. J. Cardiol. 138, 302–305 (2010).
Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 61, e6–e75 (2013).
Andrikopoulos, G. et al. Cardiac resynchronization therapy in Becker muscular dystrophy. Hellenic J. Cardiol. 54, 227–229 (2013).
Stöllberger, C. & Finsterer, J. Left ventricular synchronization by biventricular pacing in Becker muscular dystrophy as assessed by tissue Doppler imaging. Heart Lung 34, 317–320 (2005).
Davies, J. E. et al. Cardiomyopathy in a carrier of Duchenne's muscular dystrophy. J. Heart Lung Transplant. 20, 781–784 (2001).
Smith, M. C. et al. CardioWest total artificial heart in a moribund adolescent with left ventricular thrombi. Ann. Thorac. Surg. 80, 1490–1492 (2005).
Webb, S. T., Patil, V. & Vuylsteke, A. Anaesthesia for non-cardiac surgery in patient with Becker's muscular dystrophy supported with a left ventricular assist device. Eur. J. Anaesthesiol. 24, 640–642 (2007).
Leprince, P. et al. Successful bridge to transplantation in a patient with Becker muscular dystrophy-associated cardiomyopathy. J. Heart Lung Transplant. 21, 822–824 (2002).
Amodeo, A. & Adorisio, R. Left ventricular assist device in Duchenne cardiomyopathy: can we change the natural history of cardiac disease? Int. J. Cardiol. 161, e43 (2012).
Iodice, F., Testa, G., Amodeo, A. & Cogo, P. Inappropriate use of neurally adjusted ventilator assist. BMJ Case Rep. 2012, bcr1020115029 (2012).
Finsterer, J., Bittner, R. E. & Grimm, M. Cardiac involvement in Becker's muscular dystrophy, necessitating heart transplantation, 6 years before apparent skeletal muscle involvement. Neuromuscul. Disord. 9, 598–600 (1999).
Melacini, P. et al. Heart transplantation in patients with inherited myopathies associated with end-stage cardiomyopathy: molecular and biochemical defects on cardiac and skeletal muscle. Transplant. Proc. 33, 1596–1599 (2001).
Grande, A. M., Rinaldi, M., Pasquino, S., D'Armini, A. M. & Viganò, M. Heart transplantation in X-linked dilated cardiomyopathy. Ital. Heart J. 3, 476–478 (2002).
Finder, J. D. et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am. J. Respir. Crit. Care Med. 170, 456–465 (2004).
Kieny, P. et al. Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011. Ann. Phys. Rehabil. Med. 56, 443–454 (2013).
Manzur, A. Y., Kinali, M. & Muntoni, F. Update on the management of Duchenne muscular dystrophy. Arch. Dis. Child. 93, 986–990 (2008).
Bach, J. R. & Martinez, D. Duchenne muscular dystrophy: continuous noninvasive ventilatory support prolongs survival. Respir. Care 56, 744–750 (2011).
Bushby, K. et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 9, 177–189 (2010).
Muntoni, F., Bushby, K. & Manzur, A. Y. Muscular Dystrophy Campaign funded workshop on management of scoliosis in Duchenne muscular dystrophy 24 January 2005 London, UK. Neuromuscul. Disord. 16, 210–219 (2006).
Cripe, L. H. & Tobias, J. D. Cardiac considerations in the operative management of the patient with Duchenne or Becker muscular dystrophy. Paediatr. Anaesth. 23, 777–784 (2013).
Rodino-Klapac, L. R., Mendell, J. R. & Sahenk, Z. Update on the treatment of Duchenne muscular dystrophy. Curr. Neurol. Neurosci. Rep. 13, 332 (2013).
Verhaart, I. E. & Aartsma-Rus, A. Gene therapy for Duchenne muscular dystrophy. Curr. Opin. Neurol. 25, 588–596 (2012).
Anthony, K. et al. Exon skipping quantification by quantitative reverse-transcription polymerase chain reaction in Duchenne muscular dystrophy patients treated with the antisense oligomer eteplirsen. Hum. Gene Ther. Methods 23, 336–345 (2012).
Koo, T. & Wood, M. J. Clinical trials using antisense oligonucleotides in Duchenne muscular dystrophy. Hum. Gene Ther. 24, 479–488 (2013).
van Deutekom, J. C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357, 2677–2686 (2007).
Kinali, M. et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 8, 918–928 (2009).
Betts, C. et al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol. Ther. Nucleic Acids 1, e38 (2012).
Bish, L. T. et al. Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol. Ther. 20, 580–589 (2012).
Wu, B. et al. Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Ther. 17, 132–140 (2010).
Yin, H. et al. Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol. Ther. 19, 1295–1303 (2011).
Malerba, A., Boldrin, L. & Dickson, G. Long-term systemic administration of unconjugated morpholino oligomers for therapeutic expression of dystrophin by exon skipping in skeletal muscle: implications for cardiac muscle integrity. Nucleic Acid Ther. 21, 293–298 (2011).
Flanigan, K. M. et al. Anti-dystrophin T-cell responses in Duchenne muscular dystrophy: prevalence and a glucocorticoid treatment effect. Hum. Gene Ther. 24, 797–806 (2013).
Schinkel, S. et al. Long-term preservation of cardiac structure and function after adeno-associated virus serotype 9-mediated microdystrophin gene transfer in mdx mice. Hum. Gene Ther. 23, 566–575 (2012).
Kayali, R. et al. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum. Mol. Genet. 21, 4007–4020 (2012).
Wagner, K. R. et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann. Neurol. 49, 706–711 (2001).
Vianello, S. et al. Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J. 27, 2256–2269 (2013).
Fanin, M., Melacini, P., Angelini, C. & Danieli, G. A. Could utrophin rescue the myocardium of patients with dystrophin gene mutations? J. Mol. Cell. Cardiol. 31, 1501–1508 (1999).
Chun, J. L., O'Brien, R., Song, M. H., Wondrasch, B. F. & Berry, S. E. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn−/− but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl. Med. 2, 68–80 (2013).
Su, J. B. et al. Bradykinin restores left ventricular function, sarcomeric protein phosphorylation, and e/nNOS levels in dogs with Duchenne muscular dystrophy cardiomyopathy. Cardiovasc. Res. 95, 86–96 (2012).
Chamberlain, J. S. ACE inhibitor bulks up muscle. Nat. Med. 13, 125–126 (2007).
Dahiya, S. et al. Osteopontin-stimulated expression of matrix metalloproteinase-9 causes cardiomyopathy in the mdx model of Duchenne muscular dystrophy. J. Immunol. 187, 2723–2731 (2011).
Townsend, D. et al. Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. J. Clin. Invest. 120, 1140–1150 (2010).
Kuno, A. et al. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. J. Biol. Chem. 288, 5963–5972 (2013).
Hori, Y. S. et al. Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy. J. Pharmacol. Exp. Ther. 338, 784–794 (2011).
Adamo, C. M. et al. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 107, 19079–19083 (2010).
Buyse, G. M. et al. Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. Eur. Heart J. 30, 116–124 (2009).
de Oliveira Moreira, D. et al. Suramin attenuates dystrophin-deficient cardiomyopathy in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 48, 911–919 (2013).
Bostick, B. et al. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. J. Mol. Cell. Cardiol. 53, 217–222 (2012).
Kleinschmidt, J. A., Katus, H. A. & Müller, O. J. Long-term preservation of cardiac structure and function after adeno-associated virus serotype 9-mediated microdystrophin gene transfer in mdx mice. Hum. Gene Ther. 23, 566–575 (2012).
Vitiello, C. et al. Disease rescue and increased lifespan in a model of cardiomyopathy and muscular dystrophy by combined AAV treatments. PLoS ONE 4, e5051 (2009).
Kimura, S. et al. A novel approach to identify Duchenne muscular dystrophy patients for aminoglycoside antibiotics therapy. Brain Dev. 27, 400–405 (2005).
Beytía Mde, L., Vry, J. & Kirschner, J. Drug treatment of Duchenne muscular dystrophy: available evidence and perspectives. Acta Myol. 31, 4–8 (2012).
Delfín, D. A. et al. Sustaining cardiac claudin-5 levels prevents functional hallmarks of cardiomyopathy in a muscular dystrophy mouse model. Mol. Ther. 20, 1378–1383 (2012).
Author information
Authors and Affiliations
Contributions
Both authors researched data for the article, discussed its content, and wrote and reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Finsterer, J., Cripe, L. Treatment of dystrophin cardiomyopathies. Nat Rev Cardiol 11, 168–179 (2014). https://doi.org/10.1038/nrcardio.2013.213
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrcardio.2013.213
This article is cited by
-
Architecture and composition of plant nucleopore complexes, comparisons with putative homologs across kingdoms
The Nucleus (2023)
-
Longitudinal changes in cardiac function in Duchenne muscular dystrophy population as measured by magnetic resonance imaging
BMC Cardiovascular Disorders (2022)
-
Biomarkers of Cardiac Disease in Duchenne Muscular Dystrophy are Insufficient in the Absence of Clinical Cardiologic and Neurologic Assessment
Pediatric Cardiology (2018)
-
Nanopatterned Human iPSC-Based Model of a Dystrophin-Null Cardiomyopathic Phenotype
Cellular and Molecular Bioengineering (2015)