Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Oncogenic Ras/Her-2 mediate hyperproliferation of polarized epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway

Abstract

Carcinogenesis by oncogenic Ras and Her-2 involves enhanced proliferation of epithelial cells in vivo. However, hyperproliferation induced by these oncogenes, or their downstream pathways in vitro has mainly been studied in cultured, fibroblastic cell lines. Here, we demonstrate that oncogenic Ha-Ras or constitutively active Her-2 cause increased proliferation and cyclin D1 upregulation in fully polarized, mammary epithelial cells (EpH4), if cultivated as organotypic structures in three-dimensional collagen/matrigel matrices. Under standard culture conditions, however, these oncogenes failed to induce hyperproliferation. Using both specific low molecular weight inhibitors and Ras-effector–specific mutants, we dissected signaling pathways downstream of oncogenic Ras (PI3K, Mek1/MAPK) with respect to (i) hyperproliferation in collagen gels and tumorigenesis in mice and (ii) epithelial/mesenchymal transition (EMT). We show that the Ras-activated PI3K pathway is required to induce rapid tumor growth and enhanced proliferation of EpH4 cells in collagen gels, but fails to cause EMT in vitro and in vivo. On the other hand, Ras-dependent activation of the Mek1/MAPK pathway in EpH4 cells (previously shown to cause EMT and metastasis) did not induce hyperproliferation in collagen gels and caused only slow tumor growth. Our data thus indicate that Ras-dependent signaling through the PI3K- and MAPK pathways fulfil distinct, but complementary functions during carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Cass LA, Meinkoth JL . 2000 Oncogene 19: 924–932

  • Cowley S, Paterson H, Kemp P, Marshall CJ . 1994 Cell 77: 841–852

  • Dankort D, Maslikowski B, Warner N, Kanno N, Kim H, Wang Z, Moran MF, Oshima RG, Cardiff RD, Muller WJ . 2001 Mol. Cell. Biol. 21: 1540–1551

  • Dankort DL, Muller WJ . 2000 Oncogene 19: 1038–1044

  • De Vita G, Berlingieri MT, Visconti R, Castellone MD, Viglietto G, Baldassarre G, Zannini M, Bellacosa A, Tsichlis PN, Fusco A, Santoro M . 2000 Cancer Res. 60: 3916–3920

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . 1998 Genes Dev. 12: 3499–3511

  • Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA . 2001 Genes Dev. 15: 50–65

  • Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ . 1994 Oncogene 9: 3627–3633

  • Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W . 1991 J. Cell. Biol. 113: 173–185

  • Gille H, Downward J . 1999 J. Biol. Chem. 274: 22033–22040

  • Gire V, Marshall CJ, Wynford-Thomas D . 1999 Oncogene 18: 4819–4832

  • Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL . 1995 Neuron 14: 927–939

  • Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S . 2002 J. Cell. Biol. 156: 299–313

  • Joneson T, White MA, Wigler MH, Bar-Sagi D . 1996 Science 271: 810–812

  • Klinowska TC, Soriano JV, Edwards GM, Oliver JM, Valentijn AJ, Montesano R, Streuli CH . 1999 Dev. Biol. 215: 13–32

  • Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines III GK, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG . 2000 Mol. Cell. Biol. 20: 672–683

  • Leevers SJ, Weinkove D, MacDougall LK, Hafen E, Waterfield MD . 1996 EMBO J. 15: 6584–6594

  • Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J . 2000 Genes Dev. 14: 2610–2622

  • Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL . 2001 Cancer Res. 61: 6583–6591

  • Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF . 1995 Mol. Cell. Biol. 15: 3654–3663

  • Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K, Mills GB . 1999 Oncogene 18: 7034–7045

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG . 1994 Science 265: 966–970

  • Marrs JA, Nelson WJ . 1996 Int. Rev. Cytol. 165: 159–205

  • Montesano R, Soriano J, Fialka I, Orci L . 1998 In vitro Cell Dev. Biol. 34: 468–477

  • Oft M, Heider KH, Beug H . 1998 Curr. Biol. 8: 1243–1252

  • Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E . 1996 Genes Dev. 10: 2462–2477

  • Ojakian GK, Nelson WJ, Beck KA . 1997 J. Cell. Sci. 110: 2781–2794

  • Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA, Ewen ME . 1997 Nature 386: 177–181

  • Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H . 1999 EMBO J. 18: 5310–5320

  • Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . 1998 Nature 392: 190–193

  • Pritchard CA, Samuels ML, Bosch E, McMahon M . 1995 Mol. Cell. Biol. 15: 6430–6442

  • Putz E, Witter K, Offner S, Stosiek P, Zippelius A, Johnson J, Zahn R, Riethmuller G, Pantel K . 1999 Cancer Res. 59: 241–248

  • Ram TG, Ethier SP . 1996 Cell Growth Differ. 7: 551–561

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J . 1997 Cell 89: 457–467

  • Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J . 2001 Genes Dev. 15: 981–994

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . 2000 Genes Dev. 14: 2501–2514

  • Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S . 2000 EMBO J. 19: 2537–2548

  • Smith MR, Heidecker G, Rapp UR, Kung HF . 1990 Mol. Cell. Biol. 10: 3828–3833

  • Stockinger A, Eger A, Wolf J, Beug H, Foisner R . 2001 J. Cell. Biol. 154: 1185–1196

  • Szuts D, Eresh S, Bienz M . 1998 Genes Dev. 12: 2022–2035

  • Treinies I, Paterson HF, Hooper S, Wilson R, Marshall CJ . 1999 Mol. Cell. Biol. 19: 321–329

  • Webb CP, Van Aelst L, Wigler MH, Vande Woude GF . 1998 Proc. Natl. Acad. Sci. USA 95: 8773–8778

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . 1997 Mol. Cell. Biol. 17: 5598–5611

  • Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ, Hung MC . 1998 Mol. Cell. 2: 581–591

  • Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY, Hung MC . 2000 J. Biol. Chem. 275: 8027–8031

  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC . 2001 Nat. Cell Biol. 3: 245–252

Download references

Acknowledgements

The authors thank M Baccarini for critically reading the manuscript and useful comments and Drs G Christofori and R Foisner (all VBC, Vienna) for stimulating discussions, Dr R Kemler for his gift of anti-E-cadherin antibodies and Martin Jechlinger for vimentin probes and developing the in-gel apoptosis assays. E Janda, S Grünert and H Beug were supported by grants from an EU TMR network (ERBFMRXCT-980197), from the Austrian Research funding agency (FWF; SFB 006/612) and the Austrian Industrial Research Promotion Fund (FFF, project No 803776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Beug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janda, E., Litos, G., Grünert, S. et al. Oncogenic Ras/Her-2 mediate hyperproliferation of polarized epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway. Oncogene 21, 5148–5159 (2002). https://doi.org/10.1038/sj.onc.1205661

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205661

Keywords

This article is cited by

Search

Quick links