Abstract
Carcinogenesis by oncogenic Ras and Her-2 involves enhanced proliferation of epithelial cells in vivo. However, hyperproliferation induced by these oncogenes, or their downstream pathways in vitro has mainly been studied in cultured, fibroblastic cell lines. Here, we demonstrate that oncogenic Ha-Ras or constitutively active Her-2 cause increased proliferation and cyclin D1 upregulation in fully polarized, mammary epithelial cells (EpH4), if cultivated as organotypic structures in three-dimensional collagen/matrigel matrices. Under standard culture conditions, however, these oncogenes failed to induce hyperproliferation. Using both specific low molecular weight inhibitors and Ras-effector–specific mutants, we dissected signaling pathways downstream of oncogenic Ras (PI3K, Mek1/MAPK) with respect to (i) hyperproliferation in collagen gels and tumorigenesis in mice and (ii) epithelial/mesenchymal transition (EMT). We show that the Ras-activated PI3K pathway is required to induce rapid tumor growth and enhanced proliferation of EpH4 cells in collagen gels, but fails to cause EMT in vitro and in vivo. On the other hand, Ras-dependent activation of the Mek1/MAPK pathway in EpH4 cells (previously shown to cause EMT and metastasis) did not induce hyperproliferation in collagen gels and caused only slow tumor growth. Our data thus indicate that Ras-dependent signaling through the PI3K- and MAPK pathways fulfil distinct, but complementary functions during carcinogenesis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Cass LA, Meinkoth JL . 2000 Oncogene 19: 924–932
Cowley S, Paterson H, Kemp P, Marshall CJ . 1994 Cell 77: 841–852
Dankort D, Maslikowski B, Warner N, Kanno N, Kim H, Wang Z, Moran MF, Oshima RG, Cardiff RD, Muller WJ . 2001 Mol. Cell. Biol. 21: 1540–1551
Dankort DL, Muller WJ . 2000 Oncogene 19: 1038–1044
De Vita G, Berlingieri MT, Visconti R, Castellone MD, Viglietto G, Baldassarre G, Zannini M, Bellacosa A, Tsichlis PN, Fusco A, Santoro M . 2000 Cancer Res. 60: 3916–3920
Diehl JA, Cheng M, Roussel MF, Sherr CJ . 1998 Genes Dev. 12: 3499–3511
Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA . 2001 Genes Dev. 15: 50–65
Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ . 1994 Oncogene 9: 3627–3633
Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W . 1991 J. Cell. Biol. 113: 173–185
Gille H, Downward J . 1999 J. Biol. Chem. 274: 22033–22040
Gire V, Marshall CJ, Wynford-Thomas D . 1999 Oncogene 18: 4819–4832
Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL . 1995 Neuron 14: 927–939
Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S . 2002 J. Cell. Biol. 156: 299–313
Joneson T, White MA, Wigler MH, Bar-Sagi D . 1996 Science 271: 810–812
Klinowska TC, Soriano JV, Edwards GM, Oliver JM, Valentijn AJ, Montesano R, Streuli CH . 1999 Dev. Biol. 215: 13–32
Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines III GK, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG . 2000 Mol. Cell. Biol. 20: 672–683
Leevers SJ, Weinkove D, MacDougall LK, Hafen E, Waterfield MD . 1996 EMBO J. 15: 6584–6594
Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J . 2000 Genes Dev. 14: 2610–2622
Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL . 2001 Cancer Res. 61: 6583–6591
Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF . 1995 Mol. Cell. Biol. 15: 3654–3663
Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K, Mills GB . 1999 Oncogene 18: 7034–7045
Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG . 1994 Science 265: 966–970
Marrs JA, Nelson WJ . 1996 Int. Rev. Cytol. 165: 159–205
Montesano R, Soriano J, Fialka I, Orci L . 1998 In vitro Cell Dev. Biol. 34: 468–477
Oft M, Heider KH, Beug H . 1998 Curr. Biol. 8: 1243–1252
Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E . 1996 Genes Dev. 10: 2462–2477
Ojakian GK, Nelson WJ, Beck KA . 1997 J. Cell. Sci. 110: 2781–2794
Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA, Ewen ME . 1997 Nature 386: 177–181
Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H . 1999 EMBO J. 18: 5310–5320
Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . 1998 Nature 392: 190–193
Pritchard CA, Samuels ML, Bosch E, McMahon M . 1995 Mol. Cell. Biol. 15: 6430–6442
Putz E, Witter K, Offner S, Stosiek P, Zippelius A, Johnson J, Zahn R, Riethmuller G, Pantel K . 1999 Cancer Res. 59: 241–248
Ram TG, Ethier SP . 1996 Cell Growth Differ. 7: 551–561
Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J . 1997 Cell 89: 457–467
Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J . 2001 Genes Dev. 15: 981–994
Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . 2000 Genes Dev. 14: 2501–2514
Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S . 2000 EMBO J. 19: 2537–2548
Smith MR, Heidecker G, Rapp UR, Kung HF . 1990 Mol. Cell. Biol. 10: 3828–3833
Stockinger A, Eger A, Wolf J, Beug H, Foisner R . 2001 J. Cell. Biol. 154: 1185–1196
Szuts D, Eresh S, Bienz M . 1998 Genes Dev. 12: 2022–2035
Treinies I, Paterson HF, Hooper S, Wilson R, Marshall CJ . 1999 Mol. Cell. Biol. 19: 321–329
Webb CP, Van Aelst L, Wigler MH, Vande Woude GF . 1998 Proc. Natl. Acad. Sci. USA 95: 8773–8778
Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . 1997 Mol. Cell. Biol. 17: 5598–5611
Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ, Hung MC . 1998 Mol. Cell. 2: 581–591
Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY, Hung MC . 2000 J. Biol. Chem. 275: 8027–8031
Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC . 2001 Nat. Cell Biol. 3: 245–252
Acknowledgements
The authors thank M Baccarini for critically reading the manuscript and useful comments and Drs G Christofori and R Foisner (all VBC, Vienna) for stimulating discussions, Dr R Kemler for his gift of anti-E-cadherin antibodies and Martin Jechlinger for vimentin probes and developing the in-gel apoptosis assays. E Janda, S Grünert and H Beug were supported by grants from an EU TMR network (ERBFMRXCT-980197), from the Austrian Research funding agency (FWF; SFB 006/612) and the Austrian Industrial Research Promotion Fund (FFF, project No 803776).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Janda, E., Litos, G., Grünert, S. et al. Oncogenic Ras/Her-2 mediate hyperproliferation of polarized epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway. Oncogene 21, 5148–5159 (2002). https://doi.org/10.1038/sj.onc.1205661
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.onc.1205661
Keywords
This article is cited by
-
Ras enhances TGF-β signaling by decreasing cellular protein levels of its type II receptor negative regulator SPSB1
Cell Communication and Signaling (2018)
-
HMGB1 attenuates TGF-β-induced epithelial–mesenchymal transition of FaDu hypopharyngeal carcinoma cells through regulation of RAGE expression
Molecular and Cellular Biochemistry (2017)
-
Epithelial Mesenchymal Transition: a double‐edged sword
Clinical and Translational Medicine (2015)
-
Interleukin-like epithelial-to-mesenchymal transition inducer activity is controlled by proteolytic processing and plasminogen–urokinase plasminogen activator receptor system–regulated secretion during breast cancer progression
Breast Cancer Research (2014)
-
Sustained TGFβ exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis
Oncogene (2008)