Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement

Abstract

Many stem cells undergo asymmetric division to produce a self-renewing stem cell and a differentiating daughter cell. Here we show that, similarly to H3, histone H4 is inherited asymmetrically in Drosophila melanogaster male germline stem cells undergoing asymmetric division. In contrast, both H2A and H2B are inherited symmetrically. By combining super-resolution microscopy and chromatin fiber analyses with proximity ligation assays on intact nuclei, we find that old H3 is preferentially incorporated by the leading strand, whereas newly synthesized H3 is enriched on the lagging strand. Using a sequential nucleoside analog incorporation assay, we detect a high incidence of unidirectional replication fork movement in testes-derived chromatin and DNA fibers. Biased fork movement coupled with a strand preference in histone incorporation would explain how asymmetric old and new H3 and H4 are established during replication. These results suggest a role for DNA replication in patterning epigenetic information in asymmetrically dividing cells in multicellular organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histone H4 shows asymmetric inheritance pattern during Drosophila GSC asymmetric divisions.
Fig. 2: Histones H2A and H2B show symmetric distribution during Drosophila GSC asymmetric division.
Fig. 3: Super-resolution microscopy helps visualize sister chromatids on isolated chromatin fibers.
Fig. 4: Asymmetric H3 and symmetric H2A distribution on replicating sister chromatids.
Fig. 5: Old H3 preferentially associates with the leading strand on chromatin fibers.
Fig. 6: Proximity ligation assay shows distinct proximity between histones (old versus new) and lagging strand-enriched DNA replication machinery components in GSCs.
Fig. 7: Germline-derived chromatin and DNA fibers show more unidirectional fork progression compared to soma-derived chromatin and DNA fibers.

Similar content being viewed by others

Data availability

Data for graphs shown in Fig. 1d, Fig. 2b,d and Supplementary Fig. 1b are available in Supplementary Tables 1 and 2. Other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    CAS  PubMed  Google Scholar 

  2. Clevers, H. Stem cells, asymmetric division and cancer. Nat. Genet. 37, 1027–1028 (2005).

    CAS  PubMed  Google Scholar 

  3. Inaba, M. & Yamashita, Y. M. Asymmetric stem cell division: precision for robustness. Cell Stem Cell 11, 461–469 (2012).

    CAS  PubMed  Google Scholar 

  4. Morrison, S. J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074 (2006).

    CAS  PubMed  Google Scholar 

  5. Kahney, E. W., Ranjan, R., Gleason, R. J. & Chen, X. Symmetry from asymmetry or asymmetry from symmetry? Cold Spring Harb. Symp. Quant. Biol. 82, 305–318 (2017).

    PubMed  Google Scholar 

  6. Spradling, A., Fuller, M. T., Braun, R. E. & Yoshida, S. Germline stem cells. Cold Spring Harb. Perspect. Biol. 3, a002642 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Tran, V., Lim, C., Xie, J. & Chen, X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338, 679–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie, J. et al. Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the drosophila male germline. Cell 163, 920–933 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13, 153–167 (2012).

    CAS  PubMed  Google Scholar 

  10. Bellush, J. M. & Whitehouse, I. DNA replication through a chromatin environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160287 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramachandran, S. & Henikoff, S. Replicating nucleosomes. Sci Adv. 1, e1500587 (2015).

  13. Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651–2665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmad, K. & Henikoff, S. No strand left behind. Science 361, 1311–1312 (2018).

    CAS  PubMed  Google Scholar 

  15. Serra-Cardona, A. & Zhang, Z. Replication-coupled nucleosome assembly in the passage of epigenetic information and cell identity. Trends Biochem. Sci. 43, 136–148 (2018).

    CAS  PubMed  Google Scholar 

  16. Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018).

    CAS  PubMed  Google Scholar 

  17. Seale, R. L. Studies on the mode of segregation of histone nu bodies during replication in HeLa cells. Cell 9, 423–429 (1976).

    CAS  PubMed  Google Scholar 

  18. Seidman, M. M., Levine, A. J. & Weintraub, H. The asymmetric segregation of parental nucleosomes during chrosome replication. Cell 18, 439–449 (1979).

    CAS  PubMed  Google Scholar 

  19. Roufa, D. J. & Marchionni, M. A. Nucleosome segregation at a defined mammalian chromosomal site. Proc. Natl Acad. Sci. USA 79, 1810–1814 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, C. et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Snedeker, J., Wooten, M. & Chen, X. The inherent asymmetry of DNA replication. Annu Rev. Cell Dev. Biol. 33, 291–318 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    CAS  PubMed  Google Scholar 

  23. Young, N. L., Dimaggio, P. A. & Garcia, B. A. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol. Life Sci. 67, 3983–4000 (2010).

    CAS  PubMed  Google Scholar 

  24. Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 (2010).

    CAS  PubMed  Google Scholar 

  25. Jackson, V. & Chalkley, R. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell 23, 121–134 (1981).

    CAS  PubMed  Google Scholar 

  26. Russev, G. & Hancock, R. Formation of hybrid nucleosomes cantaining new and old histones. Nucleic Acids Res. 9, 4129–4137 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Katan-Khaykovich, Y. & Struhl, K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA 108, 1296–1301 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jackson, V. Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. Biochemistry 27, 2109–2120 (1988).

    CAS  PubMed  Google Scholar 

  29. Kimura, H. Histone dynamics in living cells revealed by photobleaching. DNA Repair (Amst.) 4, 939–950 (2005).

    CAS  Google Scholar 

  30. Annunziato, A. T. Split decision: what happens to nucleosomes during DNA replication? J. Biol. Chem. 280, 12065–12068 (2005).

    CAS  PubMed  Google Scholar 

  31. Cohen, S. M., Chastain, P. D. 2nd, Cordeiro-Stone, M. & Kaufman, D. G. DNA replication and the GINS complex: localization on extended chromatin fibers. Epigenetics Chromatin 2, 6 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Ahmad, K. & Henikoff, S. Histone H3 variants specify modes of chromatin assembly. Proc. Natl Acad. Sci. USA 99, 16477–16484 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McKnight, S. L. & Miller, O. L. Jr. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12, 795–804 (1977).

    CAS  PubMed  Google Scholar 

  35. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    CAS  PubMed  Google Scholar 

  36. Sivaguru, M. et al. Comparative performance of Airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microsc. Res. Tech. 81, 101–114 (2018).

    PubMed  Google Scholar 

  37. Ke, M. T. et al. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep. 14, 2718–2732 (2016).

    CAS  PubMed  Google Scholar 

  38. Van Doren, M., Williamson, A. L. & Lehmann, R. Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr. Biol. 8, 243–246 (1998).

    PubMed  Google Scholar 

  39. Blythe, S. A. & Wieschaus, E. F. Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 160, 1169–1181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wold, M. S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem 66, 61–92 (1997).

    CAS  PubMed  Google Scholar 

  41. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585–590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. McKearin, D. M. & Spradling, A. C. bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev. 4, 2242–2251 (1990).

    CAS  PubMed  Google Scholar 

  43. Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986).

    CAS  PubMed  Google Scholar 

  44. Leffak, I. M., Grainger, R. & Weintraub, H. Conservative assembly and segregation of nucleosomal histones. Cell 12, 837–845 (1977).

    CAS  PubMed  Google Scholar 

  45. Riley, D. & Weintraub, H. Conservative segregation of parental histones during replication in the presence of cycloheximide. Proc. Natl Acad. Sci. USA 76, 328–332 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Weintraub, H. Cooperative alignment of nu bodies during chromosome replication in the presence of cycloheximide. Cell 9, 419–422 (1976).

    CAS  PubMed  Google Scholar 

  47. Annunziato, A. T. Assembling chromatin: the long and winding road. Biochim Biophys. Acta 1819, 196–210 (2013).

    PubMed  Google Scholar 

  48. Szenker, E., Ray-Gallet, D. & Almouzni, G. The double face of the histone variant H3.3. Cell Res. 21, 421–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Henikoff, S. & Smith, M. M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol. 7, a019364 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pomerantz, R. T. & O'Donnell, M. What happens when replication and transcription complexes collide? Cell Cycle 9, 2537–2543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tiengwe, C. et al. Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep. 2, 185–197 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ziane, R., Camasses, A. & Radman-Livaja, M. Mechanics of DNA replication and transcription guide the asymmetric distribution of RNAPol2 and new nucleosomes on replicated daughter genomes. Preprint at https://www.biorxiv.org/content/10.1101/553669v2 (2019)

  54. McGlynn, P., Savery, N. J. & Dillingham, M. S. The conflict between DNA replication and transcription. Mol. Microbiol. 85, 12–20 (2012).

    CAS  PubMed  Google Scholar 

  55. Yarosh, W. & Spradling, A. C. Incomplete replication generates somatic DNA alterations within Drosophila polytene salivary gland cells. Genes Dev. 28, 1840–1855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Krude, T., Christov, C. P., Hyrien, O. & Marheineke, K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J. Cell Sci. 122, 2836–2845 (2009).

    CAS  PubMed  Google Scholar 

  57. Lebofsky, R. & Bensimon, A. DNA replication origin plasticity and perturbed fork progression in human inverted repeats. Mol. Cell Biol. 25, 6789–6797 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stanojcic, S. et al. Single-molecule analysis of DNA replication reveals novel features in the divergent eukaryotes Leishmania and Trypanosoma brucei versus mammalian cells. Sci. Rep. 6, 23142 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin-Parras, L., Hernandez, P., Martinez-Robles, M. L. & Schvartzman, J. B. Unidirectional replication as visualized by two-dimensional agarose gel electrophoresis. J. Mol. Biol. 220, 843–853 (1991).

    CAS  PubMed  Google Scholar 

  60. Marheineke, K., Hyrien, O. & Krude, T. Visualization of bidirectional initiation of chromosomal DNA replication in a human cell free system. Nucleic Acids Res. 33, 6931–6941 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Munden, A. et al. Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila. eLife 7, e39140 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Dalgaard, J. Z. & Klar, A. J. A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev. 15, 2060–2068 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000).

    CAS  PubMed  Google Scholar 

  64. Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol. Cell Biol. 19, 547–555 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Buck, S. W., Sandmeier, J. J. & Smith, J. S. RNA polymerase I propagates unidirectional spreading of rDNA silent chromatin. Cell 111, 1003–1014 (2002).

    CAS  PubMed  Google Scholar 

  66. Hand, R. Regulation of DNA replication on subchromosomal units of mammalian cells. J. Cell Biol. 64, 89–97 (1975).

    CAS  PubMed  Google Scholar 

  67. Huberman, J. A. & Tsai, A. Direction of DNA replication in mammalian cells. J. Mol. Biol. 75, 5–12 (1973).

    CAS  PubMed  Google Scholar 

  68. Palmigiano, A. et al. PREP1 tumor suppressor protects the late-replicating DNA by controlling its replication timing and symmetry. Sci. Rep. 8, 3198 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Soumillon, M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3, 2179–2190 (2013).

    CAS  PubMed  Google Scholar 

  70. Parisi, M. et al. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol. 5, R40 (2004).

    PubMed  PubMed Central  Google Scholar 

  71. Feng, L., Shi, Z. & Chen, X. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis. PLoS Genet 13, e1006571 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Hime, G. R., Brill, J. A. & Fuller, M. T. Assembly of ring canals in the male germ line from structural components of the contractile ring. J. Cell Sci. 109, 2779–2788 (1996).

    CAS  PubMed  Google Scholar 

  73. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int Ed. Engl. 40, 2004–2021 (2001).

    CAS  PubMed  Google Scholar 

  74. Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    CAS  PubMed  Google Scholar 

  75. Koster, D. A., Crut, A., Shuman, S., Bjornsti, M. A. & Dekker, N. H. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142, 519–530 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).

    CAS  PubMed  Google Scholar 

  77. Kuzminov, A. When DNA topology turns deadly - RNA polymerases dig in their r-loops to stand their ground: new positive and negative (super)twists in the replication-transcription conflict. Trends Genet. 34, 111–120 (2018).

    CAS  PubMed  Google Scholar 

  78. LaMarr, W. A., Yu, L., Nicolaou, K. C. & Dedon, P. C. Supercoiling affects the accessibility of glutathione to DNA-bound molecules: positive supercoiling inhibits calicheamicin-induced DNA damage. Proc. Natl Acad. Sci. USA 95, 102–107 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ljungman, M. & Hanawalt, P. C. Localized torsional tension in the DNA of human cells. Proc. Natl Acad. Sci. USA 89, 6055–6059 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Techer, H. et al. Replication dynamics: biases and robustness of DNA fiber analysis. J. Mol. Biol. 425, 4845–4855 (2013).

    CAS  PubMed  Google Scholar 

  81. Rezaei Poor Kardost, R., Billing, P. A. & Voss, E. W. Jr. Generation and characterization of three murine monoclonal nucleotide binding anti-ssDNA autoantibodies. Mol. Immunol. 19, 963–972 (1982).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Shelby and E. Wieschaus for the RpA-70-GFP fly line and the PCNA-eGFP line. We thank E. Moudrianakis, A. Spradling, J. Berger, M. Van Doren, R. Johnston and X.C. lab members for suggestions. We thank B. Mellone, S. Pavanacherry and L. Sohn for help with chromatin fiber technique. We thank Johns Hopkins Integrated Imaging Center for confocal imaging and Carnegie Institute Imaging Center for STED microscopy work. We acknowledge support from NIH 5T32GM007231 and F31GM115149-01A1 (M.W.), NIH R01GM112008 (J.X.), NIH R01GM33397 (J.G.), NIH R01GM112008, R35GM127075, the Howard Hughes Medical Institute, the David and Lucile Packard Foundation, and Johns Hopkins University startup funds (X.C.)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.W., Z.N., X.Y., J.S., J.G., J.X. and X.C.; methodology, M.W., Z.N., X.Y., J.S., J.G., J.X. and X.C.; investigation, M.W., Z.N., R.R., J.S., J.-M.K., E.U.; writing – original draft, M.W., Z.N., X.Y., J.S., J.G., J.X. and X.C.; funding acquisition, J.X., J.G. and X.C.; supervision, J.X., J.G. and X.C.

Corresponding author

Correspondence to Xin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Inês Chen was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 H1 inheritance patterns in Drosophila GSCs.

(a) A schematic diagram showing the dual color switch design that expresses first preexisting histone and then newly synthesized histone by heat shock treatment, as adapted from2. (b) Histone H1 showed overall symmetric inheritance pattern in post-mitotic GSC-GB pairs (n=12). Individual data points (circles) and mean values are shown. Error bars represent 95% confidence interval. See Supplemental Table 1 for details. Neither old H1 nor new H1 is significantly different from the value of 1 based on two-tailed Wilcoxon signed-rank test. H1-GFP GSC/GB ratio = 1.26; H1-mKO GB/GSC ratio = 1.18. H1 old GSC/GB data: Shapiro-Wilk normality test P = 0.0069, data not normally distributed. Wilcoxon signed-rank test. Two-tailed test. Sum of signed ranks = 44. P = 0.0923. H1 new GB/GSC data: Shapiro-Wilk normality test P = 0.3147, data normally distributed. One sample t-test. Two-tailed test t = 1.546 df = 11. P = 0.1503. See Supplementary Tables 1 and 2 and online Methods for additional statistical information.

Supplementary Figure 2 Replicating chromatin fibers shown distinct patterns of EdU and DNA label.

(a) DNA label (DAPI) from RC-derived chromatin fiber shows brighter DNA label (DAPI) in replicating regions (white box). Longitudinal line plot of RC-derived chromatin fiber shows a clear increase in DNA label (DAPI) signal in EdU-positive region, relative to the surrounding EdU-negative region from the same fiber. (b) DNA label (DAPI) from chromatin fiber isolated from non-replicating cells (NRC) in the Drosophila adult eye. NRC-derived fibers show uniform DNA label (DAPI). Longitudinal line plot of DNA label (DAPI) intensity in NRC-derived chromatin fiber shows small fluctuations in signal with no significant increases in intensity comparable to those observed in fibers derived from RCs. (c) Confocal versus STED images of EdU signal on replicating chromatin fiber. The EdU-positive region (box with solid orange lines) cannot be resolved into sister chromatids with confocal but can be resolved with STED. Line plot of EdU signal shows a single fiber structure with confocal imaging but a double fiber structure with STED. (d) Confocal versus Airyscan images of EdU signal on replicating chromatin fiber. The EdU-positive region (box with solid orange lines) cannot be resolved into sister chromatids with confocal but can be resolved with Airyscan. Line plot of EdU signal shows a single fiber structure with confocal imaging but a double fiber structure with Airyscan. (e) Quantification of average EdU-positive regions in replicating chromatin fibers. A 30-minute pulse of EdU incorporation yields an average of 1.96 microns; (n = 58) of EdU-positive region. Given the estimated average rate of DNA polymerase to synthesize ~0.5- 2.0 kb DNA per minute11, this 2μm chromatin fiber reflects approximately 15-60 kb of DNA. Error bars represent 95% confidence interval. See Supplementary Table 2 and online Methods for additional statistical information. Scale bar = 500nm for panels a,b,c,d.

Supplementary Figure 3 Old H4 preferentially associate with the leading strand on chromatin fibers.

(a) Airyscan image of a chromatin fiber labeled with EdU and H4K20me2/3, and RpA-70. The transition from unreplicated single fiber to replicating double fibers is co-localized with the EdU signal (white arrow). Line plot shows H4K20me2/3 and RpA-70 distribution across replicating region (box with solid white lines). (b) Quantification of the ratio H4K20me2/3 on RpA-70-depleted sister chromatid/ RpA-70-enriched sister chromatid. Individual data points (circles) and mean values are shown. Error bars represent 95% confidence interval. Average fold enrichment= 1.77; n=36 replicating regions from 18 chromatin fibers. Data is significantly different from symmetric (fold enrichment = 0). Y-axis is with log2 scale. **** P< 0.0001, two-tailed one sample t-test. Shapiro-Wilk normality test P = 0.8594, data normally distributed. One sample t-test. Two-tailed test t = 5.149 df = 34. P < 0.0001. (d) Classification of RpA-70-labeled sister chromatids into 54% leading strand-enriched (ratio >1.4), 15% lagging strand-enriched (ratio <1.4) and 31% symmetric (-1.4< ratio< 1.4). Shapiro-Wilk normality test P = 0.8594, data normally distributed. One sample t-test. Two-tailed test t = 5.149 df = 34. P < 0.0001. See Supplementary Tables 1 and 2 and online Methods for additional statistical information. Scale bar = 500nm for panel a.

Supplementary Figure 4 Proximity ligation assay shows distinct proximity between histones (old versus new) and lagging strand-enriched DNA replication machinery components in GSCs.

(a) A representative GSC showing PLA signals between the lagging strand-enriched component PCNA and new H3-GFP and a representative GSC showing PLA signals between the lagging strand-enriched component PCNA and old H3-mKO. (b) Quantification of the number of PLA puncta per nucleus between PCNA and histones (old versus new) in GSCs. Individual data points (circles) and mean values are shown. Error bars represent 95% confidence interval. PLA puncta between PCNA and new H3-GFP: 11.4; n=28; between PCNA and old H3-mKO: 8.5; (n=31), *: P< 0.05, based on Mann-Whitney U test. Shapiro-Wilk normality test P = 0.0013, data not normally distributed. PCNA + H3-mKO (old H3) GSC Shapiro-Wilk normality test P = 0.2467; data normally distributed. Mann-Whitney U two-tailed test: Mann-Whitney U = 297.0. P = 0.0366. For PCNA + H3-GFP (new H3) GSC, Shapiro-Wilk normality test P = 0.0013, data not normally distributed. For PCNA + H3-mKO (old H3) GSC, Shapiro-Wilk normality test P = 0.2467; data normally distributed. Mann-Whitney U two-tailed test: Mann-Whitney U = 297.0. P = 0.0366 (c) Quantification of PLA signals in two negative control experiments: first, PLA experiments were performed between histones and a cytoplasmic protein Vasa13; second, PLA signals were counted in non-replicating somatic hub cells. Both showed very low signals. Vasa PLA mean = 1.3, n = 52; Hub PLA mean = 0.2; n = 44. Scale bars: 5μm.

Supplementary Figure 5 DNA fiber dual-pulse experiments in bam mutant testis.

(a) A cartoon showing experimental protocol. (b) Predicted unidirectional fork progression result. (c) Unidirectional fork progression pattern from germline-derived chromatin fiber. Multiple replicons show alternation between early label (EdU in magenta) and late label (BrdU in cyan) along one chromatin fiber toward the same direction. DNA label (DAPI) shows continuity between replicons. (d) Cartoon representation of wild-type testes versus bam mutant testes. (e) Replication patterns in bam mutant testis. No category of fork movement (unidirectional, asymmetric bidirectional or bidirectional) shows statistically significant differences from wild-type testes. Chi-squared test: WT Testis vs. bam mutant testis. Unidirectional frequency: The chi-square statistic is 0.1169. The p-value is .732432 Asymmetric bidirectional frequency: The chi-square statistic is 0.0821. The p-value is .774529. Symmetric bidirectional frequency: The chi-square statistic is 0.3903. The p-value is .532159.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–2

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wooten, M., Snedeker, J., Nizami, Z.F. et al. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat Struct Mol Biol 26, 732–743 (2019). https://doi.org/10.1038/s41594-019-0269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0269-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing