Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metazoan promoters: emerging characteristics and insights into transcriptional regulation

Key Points

  • Diverse studies ranging from RNA sequencing to characterization of chromatin modifications strongly indicate that there is a set of major types of core promoters that have similar function characteristics over metazoans. These three classes are: sharply defined TATA-dependent promoters, which are often tissue-specific; dispersed promoters with a broad expression and high CG content in mammals; and promoters that are active in development and are part of large CpG islands.

  • Retrosposon elements can function as promoters, giving a new dimension to how promoters can evolve within a species.

  • RNA polymerase II is even enriched at transcription start sites for inactive genes and can travel in the 3′-to-5′ direction (called backtracking).

  • A wealth of non-coding RNAs that are associated with core promoters has been discovered. These are linked to different modes of biogenesis, but their function is not clear.

Abstract

Promoters are crucial for gene regulation. They vary greatly in terms of associated regulatory elements, sequence motifs, the choice of transcription start sites and other features. Several technologies that harness next-generation sequencing have enabled recent advances in identifying promoters and their features, helping researchers who are investigating functional categories of promoters and their modes of regulation. Additional features of promoters that are being characterized include types of histone modifications, nucleosome positioning, RNA polymerase pausing and novel small RNAs. In this Review, we discuss recent findings relating to metazoan promoters and how these findings are leading to a revised picture of what a gene promoter is and how it works.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of transcription.
Figure 2: Features of the main functional classes of metazoan promoters.
Figure 3: Retrotransposon elements influencing transcription.

Similar content being viewed by others

References

  1. Sandelin, A. et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nature Rev. Genet. 8, 424–436 (2007).

    CAS  PubMed  Google Scholar 

  2. Valen, E. & Sandelin, A. Genomic and chromatin signals underlying transcription start-site selection. Trends Genet. 27, 475–485 (2011).

    CAS  PubMed  Google Scholar 

  3. Maston, G. A., Evans, S. K. & Green, M. R. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59 (2006).

    CAS  PubMed  Google Scholar 

  4. Riethoven, J.-J. M. Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods Mol. Biol. 674, 33–42 (2010).

    CAS  PubMed  Google Scholar 

  5. Ohler, U. & Wassarman, D. A. Promoting developmental transcription. Development 137, 15–26 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kadonaga, J. T. Perspectives on the RNA polymerase II core promoter. WIREs Dev. Biol. 1, 40–51 (2012).

    CAS  Google Scholar 

  8. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genet. 38, 626–635 (2006). This is one of the most comprehensive early studies on TSS distributions in humans and mice.

    CAS  PubMed  Google Scholar 

  9. Yamashita, R., Suzuki, Y., Sugano, S. & Nakai, K. Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. Gene 350, 129–136 (2005).

    CAS  PubMed  Google Scholar 

  10. Yoshimura, K. et al. The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J. Biol. Chem. 266, 9140–9144 (1991).

    CAS  PubMed  Google Scholar 

  11. Ponjavic, J. et al. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol. 7, R78 (2006).

    PubMed  PubMed Central  Google Scholar 

  12. Plessy, C. et al. Promoter architecture of mouse olfactory receptor genes. Genome Res. 22 Dec 2011 (doi:10.1101/gr.126201.111).

    PubMed  Google Scholar 

  13. Rach, E. A. et al. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level. PLoS Genet. 7, e1001274 (2011). This is a study that correlated TSS shapes with chromatin mark information, showing the link between the two features.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. FitzGerald, P. C., Sturgill, D., Shyakhtenko, A., Oliver, B. & Vinson, C. Comparative genomics of Drosophila and human core promoters. Genome Biol. 7, R53 (2006).

    PubMed  PubMed Central  Google Scholar 

  15. Ohler, U. Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction. Nucleic Acids Res. 34, 5943–5950 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Engstrom, P. G., Ho Sui, S. J., Drivenes, O., Becker, T. S. & Lenhard, B. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res. 17, 1898–1908 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Akalin, A. et al. Transcriptional features of genomic regulatory blocks. Genome Biol. 10, R38 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Rach, E. A., Yuan, H.-Y., Majoros, W. H., Tomancak, P. & Ohler, U. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome. Genome Biol. 10, R73 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Hoskins, R. A. et al. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res. 21, 182–185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hendrix, D. A., Hong, J.-W., Zeitlinger, J., Rokhsar, D. S. & Levine, M. S. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc. Natl Acad. Sci. USA 105, 7762–7767 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. van Heeringen, S. J. et al. Nucleotide composition-linked divergence of vertebrate core promoter architecture. Genome Res. 21, 410–421 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Grishkevich, V., Hashimshony, T. & Yanai, I. Core promoter T-blocks correlate with gene expression levels in C. elegans. Genome Res. 21, 707–717 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Parry, T. J. et al. The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes Dev. 24, 2013–2018 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Damgaard, C. K. & Lykke-Andersen, J. Translational coregulation of 5′TOP mRNAs by TIA-1 and TIAR. Genes Dev. 25, 2057–2068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Perry, R. P. The architecture of mammalian ribosomal protein promoters. BMC Evol. Biol. 5, 15 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nature Biotech. 28, 817–825 (2010).

    CAS  Google Scholar 

  27. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet. 39, 1512–1516 (2007). This is one of several papers that used genomics methods to decipher stalling or poising; it also revealed functional tripartition of promoters based on RNAPII signal.

    CAS  PubMed  Google Scholar 

  28. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  29. Schwartz, Y. B. et al. Alternative epigenetic chromatin states of Polycomb target genes. PLoS Genet. 6, e1000805 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011). This study uses an algorithm to segment the genome of nine ENCODE cell lines into regions with different functions based on the combination of epigenetic marks, revealing genome-wide epigenetic differences between promoter classes.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kharchenko, P. V. et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480–485 (2011). This paper discusses a genome-wide chromatin landscape for D. melanogaster based on comprehensive histone modifications identifying combinatorial patterns, which is further integrated with chromosomes, genesand regulatory elements characteristics.

    CAS  PubMed  Google Scholar 

  32. Izzo, A. & Schneider, R. Chatting histone modifications in mammals. Brief Funct. Genomics 9, 429–443 (2010).

    PubMed  Google Scholar 

  33. Lee, J.-S., Smith, E. & Shilatifard, A. The language of histone crosstalk. Cell 142, 682–685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nozaki, T. et al. Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification. BMC Genomics 12, 416 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, C. & Pugh, B. Nucleosome positioning and gene regulation: advances through genomics. Nature Rev. Genet. 10, 161–172 (2009).

    CAS  PubMed  Google Scholar 

  36. Ioshikhes, I., Hosid, S. & Pugh, F. Variety of genomic DNA patterns for nucleosome positioning. Genome Res. 21, 1863–1871 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Radman-Livaja, M., Liu, C. L., Friedman, N., Schreiber, S. L. & Rando, O. J. Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast. PLoS Genet. 6, e1000837 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Subtil-Rodríguez, A. & Reyes, J. C. BRG1 helps RNA polymerase II to overcome a nucleosomal barrier during elongation, in vivo. EMBO Rep. 11, 751–757 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fu, Y., Sinha, M., Peterson, C. L., Weng, Z. & van Steensel, B. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mikkelsen, T. S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roider, H. G., Lenhard, B., Kanhere, A., Haas, S. A. & Vingron, M. CpG-depleted promoters harbor tissue-specific transcription factor binding signals—implications for motif overrepresentation analyses. Nucleic Acids Res. 37, 6305–6315 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Soler, E. et al. A systems approach to analyze transcription factors in mammalian cells. Methods 53, 151–162 (2011).

    CAS  PubMed  Google Scholar 

  47. Dean, A. In the loop: long range chromatin interactions and gene regulation. Brief Funct. Genomics 10, 3–10 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    CAS  PubMed  Google Scholar 

  50. Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007).

    PubMed  Google Scholar 

  51. Ferrai, C., de Castro, I. J., Lavitas, L., Chotalia, M. & Pombo, A. Gene positioning. Cold Spring Harb. Perspect. Biol. 2, a000588 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nature Genet. 39, 1507–1511 (2007).

    CAS  PubMed  Google Scholar 

  53. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007). This was one of several papers using genomics methods to decipher stalling or poising.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nechaev, S. & Adelman, K. Pol. II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta 1809, 34–45 (2011).

    CAS  PubMed  Google Scholar 

  55. Gilmour, D. S. & Lis, J. T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984–3989 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA Sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Buratowski, S. Progression through the RNA polymerase II CTD Cycle. Mol. Cell 36, 541–546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferrai, C. et al. Poised transcription factories prime silent uPA gene prior to activation. PLoS Biol. 8, e1000270 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).

    CAS  PubMed  Google Scholar 

  61. Gilchrist, D. A. et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143, 540–551 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nature Genet. 41, 563–571 (2009). This paper showed the large number of retrotransposon elements that are potential TSSs.

    CAS  PubMed  Google Scholar 

  63. Frith, M. C. et al. A code for transcription initiation in mammalian genomes. Genome Res. 18, 1–12 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Faulkner, G. J. & Carninci, P. Altruistic functions for selfish DNA. Cell Cycle 8, 2895–2900 (2009).

    CAS  PubMed  Google Scholar 

  65. Plessy, C. et al. Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods 7, 528–534 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohen, C. J., Lock, W. M. & Mager, D. L. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448, 105–114 (2009).

    CAS  PubMed  Google Scholar 

  67. Schoenberg, D. R. & Maquat, L. E. Re-capping the message. Trends Biochem. Sci. 34, 435–442 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jackowiak, P., Nowacka, M., Strozycki, P. M. & Figlerowicz, M. RNA degradome—its biogenesis and functions. Nucleic Acids Res. 39, 7361–7370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fejes-Toth, K. et al. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, (2009) (1028).

  70. Ni, T. et al. A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nature Methods 7, 521–527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mercer, T. R. et al. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 20, 1639–1650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. O'Sullivan, J. M. et al. Gene loops juxtapose promoters and terminators in yeast. Nature Genet. 36, 1014–1018 (2004).

    CAS  PubMed  Google Scholar 

  73. Kaderi, El, B., Medler, S., Raghunayakula, S. & Ansari, A. Gene looping is conferred by activator-dependent interaction of transcription initiation and termination machineries. J. Biol. Chem. 284, 25015–25025 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Perkins, K. J., Lusic, M., Mitar, I., Giacca, M. & Proudfoot, N. J. Transcription-dependent gene looping of the HIV-1 provirus is dictated by recognition of pre-mRNA processing signals. Mol. Cell 29, 56–68 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tan-Wong, S. M., French, J. D., Proudfoot, N. J. & Brown, M. A. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proc. Natl Acad. Sci. USA 105, 5160–5165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    CAS  PubMed  Google Scholar 

  77. Preker, P. et al. PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res. 39, 7179–7193 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Carninci, P. RNA dust: where are the genes? DNA Res. 17, 51–59 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nature Rev. Genet. 10, 833–844 (2009).

    CAS  PubMed  Google Scholar 

  80. Taft, R. J., Kaplan, C. D., Simons, C. & Mattick, J. S. Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle 8, 2332–2338 (2009).

    CAS  PubMed  Google Scholar 

  81. Valen, E. et al. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nature Struct. Mol. Biol. 18, 1075–1082 (2011).

    CAS  Google Scholar 

  82. Cernilogar, F. M. et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480, 391–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Basehoar, A. D., Zanton, S. J. & Pugh, B. F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).

    CAS  PubMed  Google Scholar 

  84. Yamamoto, Y. Y. et al. Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis. Plant J. 60, 350–362 (2009).

    CAS  PubMed  Google Scholar 

  85. Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

    PubMed  Google Scholar 

  86. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet. 41, 572–578 (2009).

    CAS  PubMed  Google Scholar 

  88. Taft, R. J. et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nature Struct. Mol. Biol. 17, 1030–1034 (2010).

    CAS  Google Scholar 

  89. Izban, M. G. & Luse, D. S. The increment of SII-facilitated transcript cleavage varies dramatically between elongation competent and incompetent RNA polymerase II ternary complexes. J. Biol. Chem. 268, 12874–12885 (1993).

    CAS  PubMed  Google Scholar 

  90. Mandal, S. S. et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc. Natl Acad. Sci. USA 101, 7572–7577 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nature Rev. Genet. 5, 276–287 (2004).

    CAS  PubMed  Google Scholar 

  92. Valen, E. et al. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res. 19, 255–265 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kanamori-Katayama, M. et al. Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 21, 1150–1159 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009). This study shows the large diversity of ncRNAs around promoters.

  95. Hashimoto, S.-I. et al. 5′-end SAGE for the analysis of transcriptional start sites. Nature Biotech. 22, 1146–1149 (2004).

    CAS  Google Scholar 

  96. Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods 2, 105–111 (2005).

    CAS  PubMed  Google Scholar 

  97. Thomas, M. F. & Ansel, K. M. Construction of small RNA cDNA libraries for deep sequencing. Methods Mol. Biol. 667, 93–111 (2010).

    CAS  PubMed  Google Scholar 

  98. Kawaji, H. et al. Hidden layers of human small RNAs. BMC Genomics 9, 157 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. The ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  101. Gilchrist, D. A. et al. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22, 1921–1933 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gries, T. J., Kontur, W. S., Capp, M. W., Saecker, R. M. & Record, M. T. One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc. Natl Acad. Sci. USA 107, 10418–10423 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.L. acknowledges the support of the Bergen Research Foundation, the Norwegian YFF project 180435, the Norwegian Research Foundation and the UK Medical Research Council. A.S. was supported by grants from the European Research Commission (FP7/2007-2013/ERC grant agreement 204135), The Novo Nordisk Foundation, The Lundbeck Foundation and the Danish Cancer Society. P.C. was supported by a grant from the Seventh Framework of the European Union Commission to the Dopaminet Consortium, the Modhep Consortium, the Braintrain Consortium, the Funding Program for the Next Generation World-Leading Researchers (NEXT Program) and a research grant to RIKEN Omics Science Center from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boris Lenhard, Albin Sandelin or Piero Carninci.

Ethics declarations

Competing interests

Piero Carninci is the author of a patent relating to the cap analysis of gene expression (CAGE) technology and is on the scientific advisory board of a company that licenses the CAGE technology. Neither Boris Lenhard nor Albin Sandelin declares any competing financial interests.

Related links

Related links

FURTHER INFORMATION

Boris Lenhard's homepage

Albin Sandelin's homepage

Piero Carninci's homepage

ENCODE

FANTOM

modENCODE

Nature Reviews Genetics Series on Modes of transcriptional regulation

Nature Reviews Genetics Series on Regulatory elements

Glossary

Transcription start sites

(TSSs). Nucleotides in the genome that are the first to be transcribed into a particular RNA.

Pre-initiation complex

(PIC). A polypeptide complex consisting of RNA polymerase II and general transcription factors. This forms in the core promoter region around the transcription start site and primes RNA polymerase II for transcription.

B recognition element

(BRE). A core promoter element with consensus sequence SSRCGCC found upstream of TATA box.

Cap analysis of gene expression

(CAGE). A method for finding transcription start sites.

Chromatin immunoprecipitation

(ChIP). A method for finding DNA–protein interactions that is often combined with sequencing (ChIP–seq) or with microarray analysis (ChIP–chip).

CpG island

Genomic sequences that are not depleted of CG dinucleotides, which occurs by 5-methylcytosine deamination. They often overlap or are near to transcription start sites. Most definitions set a minimum length (for example, 200 or 500bp) and a minimum observed/expected CpG ratio.

TATA box

A T/A-rich sequence that lies upstream of TSSs.

Initiator element

(Inr element). A sequence pattern overlapping the TSSs.

Downstream promoter element

(DPE). This has the consensus sequence RGWCGTG and is common in Drosophila melanogaster genes 25–30 bp downstream of the transcription start site.

Expressed sequence tag

(EST). An older method that sequences parts of full-length RNAs.

Polycomb group proteins

(PcG proteins). These are epigenetic regulators of gene expression that silence target genes by establishing a repressive chromatin state. Because of their role in maintaining states of gene expression, PcG proteins have key roles in cell fate maintenance and transitions during development.

Polycomb repressive complex 2

(PRC2). A regulatory complex that catalyses trimethylation of histone H3 at lysine 27.

Trithorax protein

Proteins that belong to the Trithorax group (TrxG) form large complexes and maintain the stable and heritable expression of certain genes throughout development.

Nucleosome occupancy

A measure of the degree to which a certain DNA region is bound by a nucleosome.

Nucleosome positioning

The pattern of nucleosome occupancy along DNA.

SWI/SNF

A protein complex that can alter the positions of nucleosomes. It has ATP-dependent chromatin remodelling activity.

CCCTC-binding factor

(CTCF). A transcription factor, one role of which seems to be to define some chromatin boundaries that are associated with differential DNA accessibility.

Transcription factories

Nuclear compartments in which active transcription takes place; they have a high concentration of RNA polymerase II.

Recapping

A process by which an uncapped RNA 5′ end − for example, resulting from degradation − is stabilized by the addition of a cap structure.

Cap structure

A chemical structure found at the 5′ end of mature mRNAs that is used for mRNA stabilization and export to the cytosol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenhard, B., Sandelin, A. & Carninci, P. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 13, 233–245 (2012). https://doi.org/10.1038/nrg3163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3163

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research