Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting protein aggregation for the treatment of degenerative diseases

Key Points

  • The misfolding and/or misassembly of more than 30 human proteins — for example, transthyretin, immunoglobulin light chain, serum amyloid A and amyloid-β — into various aggregate structures, a process known as amyloidogenesis, cause a range of degenerative disorders, collectively called amyloid diseases.

  • Amyloidogenesis is a dynamic process; thus, the protein aggregates produced adopt a range of structures ranging from small, relatively unstructured oligomers to structurally well-defined cross-β-sheet amyloid fibrils. Some structures may only be produced in humans.

  • Although there is mounting genetic and pharmacological evidence that the process of protein aggregation is an important driver of neurodegeneration, a structure–proteotoxicity relationship is lacking for all human amyloid diseases. Moreover, we do not understand how the process of aggregation leads to the loss of postmitotic tissue in any human amyloid disease.

  • In this Review, we summarize current and emerging strategies to ameliorate degenerative disorders associated with protein aggregation, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates.

  • Potential therapeutic strategies for degenerative disorders associated with protein aggregation include: protein stabilization to prevent the conformational changes that enable aggregation, protein reduction to lower the concentration of the aggregation-prone protein and thereby slow aggregation, aggregate clearance or remodelling to reduce proteotoxicity, cellular proteostasis network adaptation to enhance proteome quality control, and reducing seeding and cell-to-cell spreading.

Abstract

The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, which are collectively known as amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacological and genetic evidence now supports protein aggregation as the cause of postmitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation and of the structure–activity relationships underlying proteotoxicity is needed to develop future disease-modifying therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amyloidogenesis: a process of aggregation influenced by the physical chemistry of the protein as well as by cellular and extracellular components.
Figure 2: Mechanisms of protein aggregation.
Figure 3: Therapeutic strategies to ameliorate amyloidoses.
Figure 4: Prion-like protein aggregate spreading: disease initiation, progression and therapeutic strategies.
Figure 5: Combining therapeutic strategies to ameliorate protein misfolding and aggregation diseases.

Similar content being viewed by others

References

  1. Andrade, C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75, 408–427 (1952).

    Article  CAS  PubMed  Google Scholar 

  2. Glenner, G. G., Terry, W., Harada, M., Isersky, C. & Page, D. Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses. Science 172, 1150–1151 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Linke, R. P. et al. Characteristics of a serum substance (SAA) antigenically related to amyloid fibril protein AA. Z. Immunitätsforsch. Exp. Klin. Immunol. 150, 219–219 (1975).

    Google Scholar 

  4. Glenner, G. G. & Wong, C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Sipe, J. D. et al. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 21, 221–224 (2014).

    Article  PubMed  Google Scholar 

  6. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012). In this review, the authors connect observations on amyloid polymorphism, amyloid strains and co-aggregation of pathogenic proteins in tissues to possible mechanisms of toxicity and intra-organismal transmissibility of amyloid disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonar, L., Cohen, A. S. & Skinner, M. M. Characterization of amyloid fibril as a cross-β protein. Proc. Soc. Exp. Biol. Med. 131, 1373–1375 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Holmes, B. B. et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl Acad. Sci. USA 110, E3138–E3147 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Udan-Johns, M. et al. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum. Mol. Genet. 23, 157–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Yanamandra, K. et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80, 402–414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Knauer, M. F., Soreghan, B., Burdick, D., Kosmoski, J. & Glabe, C. G. Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/β protein. Proc. Natl Acad. Sci. USA 89, 7437–7441 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferretti, M. T., Bruno, M. A., Ducatenzeiler, A., Klein, W. L. & Cuello, A. C. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer's disease. Neurobiol. Aging 33, 1329–1342 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Hong, M. G., Alexeyenko, A., Lambert, J. C., Amouyel, P. & Prince, J. A. Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease. J. Hum. Gen. 55, 707–709 (2010).

    Article  CAS  Google Scholar 

  15. Sahlin, C. et al. The Arctic Alzheimer mutation favors intracellular amyloid-β production by making amyloid precursor protein less available to α-secretase. J. Neurochem. 101, 854–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Page, L. J. et al. Secretion of amyloidogenic gelsolin progressively compromises protein homeostasis leading to the intracellular aggregation of proteins. Proc. Natl Acad. Sci. USA 106, 11125–11130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eisele, Y. S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010). This paper shows that intraperitoneal inoculation with Aβ amyloid-rich extracts induced amyloidogenesis within the brains of transgenic mice after prolonged incubation times.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frost, B., Jacks, R. L. & Diamond, M. I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845–12852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012). This manuscript demonstrates that a single intrastriatal inoculation of synthetic α-synuclein fibrils leads to the cell-to-cell transmission of pathological α-synuclein Parkinson-like Lewy pathology in anatomically interconnected regions. The pathology recapitulated the neurodegenerative cascade of Parkinson disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Coelho, T. et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 79, 785–792 (2012). The data from a placebo-controlled double-blind clinical trial are summarized, demonstrating the efficacy of tafamidis in slowing the progression of TTR FAP in the efficacy-evaluable population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coelho, T. et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J. Neurol. 260, 2802–2814 (2013). This follow-on study demonstrates that the efficacy of tafamidis demonstrated in reference 22 is durable for an additional 18 months.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berk, J. L. et al. Repurposing diflunisal for familial amyloid polyneuropathy a randomized clinical trial. JAMA 310, 2658–2667 (2013). The positive diflunisal clinical trial data provide complementary evidence that TTR kinetic stabilization is an effective therapeutic strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hammarstrom, P., Schneider, F. & Kelly, J. W. Trans-suppression of misfolding in an amyloid disease. Science 293, 2459–2462 (2001). This study demonstrates interallelic trans -suppression in an amyloid disease: the idea is that a disease-associated TTR mutation can be suppressed by a mutation within TTR on the second allele. This happens because TTR heterotetramer dissociation — the rate-limiting step of amyloidogenesis — is slowed dramatically, thus the concentration of misfolded monomers and aggregates is lower, and hence pathology is ameliorated.

    Article  CAS  PubMed  Google Scholar 

  26. Hammarstrom, P., Wiseman, R. L., Powers, E. T. & Kelly, J. W. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713–716 (2003). This paper demonstrates how interallelic trans -suppression (reference 25), which relies on increasing the activation barrier for dissociation, can be mimicked by a small molecule that selectively binds to and stabilizes the native state during the dissociative transition state, thus slowing the rate-limiting step of amyloidogenesis. These small molecules are a special class of pharmacological chaperones called kinetic stabilizers.

    Article  PubMed  CAS  Google Scholar 

  27. Kastritis, E. et al. Bortezomib with or without dexamethasone in primary systemic (light chain) amyloidosis. J. Clin. Oncol. 28, 1031–1037 (2010). This manuscript demonstrates that reducing LC concentration, and consequently its aggregation, by killing clonal plasma cells is efficacious for ameliorating AL amyloidosis.

    Article  CAS  PubMed  Google Scholar 

  28. Merlini, G., Comenzo, R. L., Seldin, D. C., Wechalekar, A. & Gertz, M. A. Immunoglobulin light chain amyloidosis. Expert Rev. Hematol. 7, 143–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003). This review introduces the range of non-amyloid aggregates and the basis for suspecting them as agents of proteotoxicity and postmitotic tissue loss.

    Article  CAS  PubMed  Google Scholar 

  30. Lachmann, H. J. et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br. J. Haematol. 122, 78–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Bulawa, C. E. et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl Acad. Sci. USA 109, 9629–9634, (2012). This paper introduces the preclinical data and rationale for using tafamidis as a kinetic stabilizer to ameliorate TTR amyloidoses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bacskai, B. J. et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med. 7, 369–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Colon, W. & Kelly, J. W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992). This paper demonstrates that conformational changes are sufficient to enable the process of amyloidogenesis.

    Article  CAS  PubMed  Google Scholar 

  34. Hurle, M. R., Helms, L. R., Li, L., Chan, W. & Wetzel, R. A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc. Natl Acad. Sci. USA 91, 5446–5450 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan, K. M. et al. Conversion of α-helices into β-sheets features in the formation of the Scrapie prion proteins. Proc. Natl Acad. Sci. USA 90, 10962–10966 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Booth, D. R. et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J. P. et al. 1H NMR of Aβ amyloid peptide congeners in water solution. Conformational changes correlate with plaque competence. Biochemistry 34, 5191–5200 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Haass, C. et al. The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway. Nat. Med. 1, 1291–1296 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Ross, C. A. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35, 819–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl Acad. Sci. USA 110, 2366–2370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Graham, R. K. et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 1179–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, S., Ferrone, F. A. & Wetzel, R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl Acad. Sci. USA 99, 11884–11889 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kosik, K. S., Joachim, C. L. & Selkoe, D. J. MicrotubuIe-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl Acad. Sci. USA 83, 4044–4048 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Wolfe, M. S. Tau mutations in neurodegenerative diseases. J. Biol. Chem. 284, 6021–6025 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Drewes, G. et al. Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J. 11, 2131–2138 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burre, J., Sharma, M. & Sudhof, T. C. α-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl Acad. Sci. USA 111, E4274–E4283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bartels, T., Choi, J. G. & Selkoe, D. J. α-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, L. et al. α-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol. 24, 2319–2326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Shelkovnikova, T. A., Robinson, H. K., Southcombe, J. A., Ninkina, N. & Buchman, V. L. Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Hum. Mol. Genet. 23, 5211–5226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Laganowsky, A. et al. Atomic view of a toxic amyloid small oligomer. Science 335, 1228–1231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291 (2002). Reference 58 reports an oligomeric cylindrical barrel structure that is formed from six antiparallel strands of a segment of the amyloid-forming αB crystallin protein, which the authors call a cylindrin structure. This structure allows hypotheses about proteotoxicity of the type discussed in reference 59 to be generated and tested.

    Article  CAS  PubMed  Google Scholar 

  60. Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Powers, E. T. & Powers, D. L. The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the “supercritical concentration”. Biophys. J. 91, 122–132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Hofrichter, J., Ross, P. D. & Eaton, W. A. Kinetics and mechanism of deoxyhemogloblin-S gelation: a new approach to understanding sickle cell disease. Proc. Natl Acad. Sci. USA 71, 4864–4868 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ferrone, F. A., Hofrichter, J. & Eaton, W. A. Kinetics of sickle hemoglobin poloymerization. II. A double nucleation mechansim. J. Mol. Biol. 183, 611–631 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Lundmark, K. et al. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc. Natl Acad. Sci. USA 99, 6979–6984 (2002). This pioneering paper demonstrated the acceleration of AA amyloidosis by the injection or oral administration of AA amyloid fibrils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aguzzi, A. & Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 783–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Hurshman, A. R., White, J. T., Powers, E. T. & Kelly, J. W. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43, 7365–7381 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimers disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Cheng, I. H. et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23828 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Palladini, G. et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood 107, 3854–3858 (2006). This manuscript demonstrates that a decrease in circulating soluble LC levels correlates with an improvement in health, without correlating with a decrease in LC amyloid fibrils.

    Article  CAS  PubMed  Google Scholar 

  73. Simsek, I. et al. No regression of renal amyloid mass despite remission of nephrotic syndrome in a patient with TRAPS following etanercept therapy. J. Nephrol. 23, 119–123 (2010).

    PubMed  Google Scholar 

  74. Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl Acad. Sci. USA 108, 4194–4199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Sousa, M. M., Cardoso, I., Fernandes, R., Guimaraes, A. & Saraiva, M. J. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am. J. Pathol. 159, 1993–2000 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Bieschke, J. et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat. Chem. Biol. 8, 93–101 (2012). This paper demonstrates that the acceleration of Aβ fibrillogenesis, through the action of the orcein-related small molecule O4, decreases the concentration of small, toxic Aβ oligomers in aggregation reactions, as O4 treatment suppresses inhibition of long-term potentiation by Aβ oligomers in hippocampal brain slices.

    Article  CAS  Google Scholar 

  78. Lee, J., Culyba, E. K., Powers, E. T. & Kelly, J. W. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nat. Chem. Biol. 7, 602–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garai, K. & Frieden, C. Quantitative analysis of the time course of Aβ oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aβ. Proc. Natl Acad. Sci. USA 110, 3321–3326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lashuel, H. A., Wurth, C., Woo, L. & Kelly, J. W. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions. Biochemistry 38, 13560–13573 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Theuns, J. et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am. J. Hum. Genet. 78, 936–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zigman, W. B. & Lott, I. T. Alzheimer's disease in Down syndrome: neurobiology and risk. Ment. Retard. Dev. Disabil. Res. Rev. 13, 237–246 (2007).

    Article  PubMed  Google Scholar 

  84. Chartier-Harlin, M. C. et al. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Herlenius, G., Wilczek, H. E., Larsson, M. & Ericzon, B. G. Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: results from the Familial Amyloidotic Polyneuropathy World Transplant Registry. Transplantation 77, 64–71 (2004).

    Article  PubMed  Google Scholar 

  86. Holmgren, G. et al. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 341, 1113–1116 (1993). This pioneering approach of surgically mediated gene therapy for successfully treating TTR amyloid disease demonstrated the concept of protein reduction therapy.

    Article  CAS  PubMed  Google Scholar 

  87. Ihse, E. et al. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. J. Pathol. 216, 253–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Wilczek, H. E., Larsson, M., Ericzon, B. G. & FAPWTR. Long-term data from the Familial Amyloidotic Polyneuropathy World Transplant Registry (FAPWTR). Amyloid 18, 193–195 (2011).

    Article  PubMed  Google Scholar 

  89. Yamashita, T. et al. Long-term survival after liver transplantation in patients with familial amyloid polyneuropathy. Neurology 78, 637–643 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Antoni, G. et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J. Nuclear Med. 54, 213–220 (2013).

    Article  CAS  Google Scholar 

  91. Delahaye, N. et al. Impact of liver transplantation on cardiac autonomic denervation in familial amyloid polyneuropathy. Medicine 85, 229–238 (2006).

    Article  PubMed  Google Scholar 

  92. Suhr, O. B. Impact of liver transplantation on familial amyloidotic polyneuropathy (FAP) patients' symptoms and complications. Amyloid 10, 77–83 (2003).

    Article  PubMed  Google Scholar 

  93. Rydh, A. et al. Serum amyloid P component scintigraphy in familial amyloid polyneuropathy: regression of visceral amyloid following liver transplantation. Eur. J. Nucl. Med. 25, 709–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Stangou, A. J. et al. Hereditary fibrinogen A α-chain amyloidosis: phenotypic characterization of a systemic disease and the role of liver transplantation. Blood 115, 2998–3007 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Olofsson, B. O., Backman, C., Karp, K. & Suhr, O. B. Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy, Portuguese type. Transplantation 73, 745–751 (2002).

    Article  PubMed  Google Scholar 

  96. Munar-Ques, M. et al. Vitreous amyloidosis after liver transplantation in patients with familial amyloid polyneuropathy: ocular synthesis of mutant transthyretin. Amyloid 7, 266–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Maia, L. F. et al. CNS involvement in V30M transthyretin amyloidosis: clinical, neuropathological and biochemical findings. J. Neurol. Neurosurg. Psychiatry (2014).

  98. Gertz, M. A. Immunoglobulin light chain amyloidosis: 2011 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 86, 181–186 (2011).

    CAS  Google Scholar 

  99. Arendt, B. K. et al. Biologic and genetic characterization of the novel amyloidogenic lamda light chain-secreting human cell lines, ALMC-1 and ALMC-2. Blood 112, 1931–1941 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Monis, G. F. et al. Role of endocytic inhibitory drugs on internalization of amyloidogenic light chains by cardiac fibroblasts. Am. J. Pathol. 169, 1939–1952 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Shi, J. et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38α MAPK pathway. Proc. Natl Acad. Sci. USA 107, 4188–4193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Comenzo, R. L. Current and emerging views and treatments of systemic immunoglobulin light-chain (AL) amyloidosis. Contrib. Nephrol. 153, 195–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Obici, L. & Merlini, G. Amyloidosis in autoinflammatory syndromes. Autoimmun. Rev. 12, 14–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Gillmore, J. D., Lovat, L. B., Persey, M. R., Pepys, M. B. & Hawkins, P. N. Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. Lancet 358, 24–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Kisilevsky, R., Narindrasorasak, S., Tape, C., Tan, R. & Boudreau, L. During AA amyloidogenesis is proteolytic attack on serum amyloid A a pre- or post-fibrillogenic event? Amyloid 1, 174–183 (1994).

    Article  CAS  Google Scholar 

  106. Denis, M. A. et al. Control of AA amyloidosis complicating Crohn's disease: a clinico-pathological study. Eur. J. Clin. Invest. 43, 292–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Ishii, W. et al. A case with rheumatoid arthritis and systemic reactive AA amyloidosis showing rapid regression of amyloid deposition on gastroduodenal mucosa after a combined therapy of corticosteroid and etanercept. Rheumatol. Int. 31, 247–250 (2011).

    Article  PubMed  Google Scholar 

  108. Kuroda, T. et al. A case of AA amyloidosis associated with rheumatoid arthritis effectively treated with Infliximab. Rheumatol. Int. 28, 1155–1159 (2008).

    Article  PubMed  Google Scholar 

  109. Lesnyak, Q. et al. Beneficial effect of eprodisate (NC-503) on the preservation of kidney function in AA amyloidosis patients: 3-year follow-up results. Ann. Rheum. Dis. 66, 248–248 (2007).

    Google Scholar 

  110. Matsuda, M., Morita, H. & Ikeda, S. Long-term follow-up of systemic reactive AA amyloidosis secondary to rheumatoid arthritis: successful treatment with intermediate-dose corticosteroid. Internal Med. 41, 403–407 (2002). This work shows that a reduction in inflammation, which reduces the AA amyloidogenic protein concentration, is effective at ameliorating AA amyloidosis.

    Article  Google Scholar 

  111. Nakamura, T. et al. Efficacy of cyclophosphamide combined with prednisolone in patients with AA amyloidosis secondary to rheumatoid arthritis. Clin. Rheumatol. 22, 371–375 (2003).

    Article  PubMed  Google Scholar 

  112. Srinivasan, S. et al. Pathogenic serum amyloid A1.1 shows a long oligomer-rich fibrillation lag phase contrary to the highly amyloidogenic non-pathogenic SAA2.2. J. Biol. Chem. 288, 2744–2755 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Borchelt, D. R. et al. Familial Alzheimer's disease-linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17, 1005–1013 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Wolfe, M. S. Structure, mechanism and inhibition of γ-secretase and presenilin-like proteases. Biol. Chem. 391, 839–847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sambamurti, K. et al. Targets for AD treatment: conflicting messages from γ-secretase inhibitors. J. Neurochem. 117, 359–374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. De Strooper, B., Vassar, R. & Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 6, 99–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yan, R. & Vassar, R. Targeting the β-secretase BACE1 for Alzheimer's disease therapy. Lancet Neurol. 13, 319–329 (2014). A few companies, including Merck, have developed BACE1-selective small-molecule inhibitors that hold great promise for ameliorating AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ghosh, A. K. & Osswald, H. L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease. Chem. Soc. Rev. 43, 6765–6813 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ohno, M. et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Neuron 41, 27–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. De Strooper, B., Iwatsubo, T. & Wolfe, M. S. Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006304 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. De Strooper, B. & Gutierrez, L. C. Learning by failing: ideas and concepts to tackle γ-secretases in Alzheimer disease and beyond. Annu. Rev. Pharmacol. Toxicol. 55, 419–437 (2014).

    Article  PubMed  CAS  Google Scholar 

  122. Golde, T. E., Koo, E. H., Felsenstein, K. M., Osborne, B. A. & Miele, L. γ-secretase inhibitors and modulators. Biochim. Biophys. Acta 1828, 2898–2907 (2013). The use of allosteric regulators of γ-secretase that impede Aβ generation without inhibiting its processing of critical substrates is an appealing strategy to ameliorate AD.

    Article  CAS  PubMed  Google Scholar 

  123. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Masliah, E. et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64, 129–131 (2005). Amyloid disease vaccination in the absence of an immune or inflammatory reaction holds great promise for preventing the human amyloid diseases.

    Article  CAS  PubMed  Google Scholar 

  125. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Benson, M. D. et al. Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve 33, 609–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Zhou, P., Ma, X., Iyer, L., Chaulagain, C. & Comenzo, R. L. One siRNA pool targeting the λ constant region stops λ light-chain production and causes terminal endoplasmic reticulum stress. Blood 123, 3440–3451 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Hovey, B. M. et al. Preclinical development of siRNA therapeutics for AL amyloidosis. Gene Ther. 18, 1150–1156 (2011). References 125, 127 and 128 show that RNAi treatment is effective at reducing protein levels in some tissues and is a promising strategy for ameliorating amyloidosis in the systemic amyloidoses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Coelho, T. et al. A strikingly benign evolution of FAP in an individual found to be a compound heterozygote for two TTR mutations: TTR MET 30 and TTR MET 119. J. Rheumatol. 20, 179 (1993).

    Google Scholar 

  130. Johnson, S. M. et al. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc. Chem. Res. 38, 911–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Johnson, S. M., Connelly, S., Fearns, C., Powers, E. T. & Kelly, J. W. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 421, 185–203 (2012). This review outlines the genetic and pharmacological evidence supporting the hypothesis that the process of TTR aggregation causes the TTR amyloidoses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rappley, I. et al. Quantification of transthyretin kinetic stability in human plasma using subunit exchange. Biochemistry 53, 1993–2006 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Miroy, G. J. et al. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc. Natl Acad. Sci. USA 93, 15051–15056 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Razavi, H. et al. Benzoxazoles as transthyretin amyloid fibril inhibitors: synthesis, evaluation, and mechanism of action. Angew. Chem. Int. Ed. Engl. 42, 2758–2761 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Baures, P. W., Peterson, S. A. & Kelly, J. W. Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg. Med. Chem. 6, 1389–1401 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Klabunde, T. et al. Rational design of potent human transthyretin amyloid disease inhibitors. Nat. Struct. Biol. 7, 312–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Connelly, S., Choi, S., Johnson, S. M., Kelly, J. W. & Wilson, I. A. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr. Opin. Struct. Biol. 20, 54–62 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sekijima, Y., Dendle, M. A. & Kelly, J. W. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 13, 236–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Tojo, K., Sekijima, Y., Kelly, J. W. & Ikeda, S. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci. Res. 56, 441–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Amaducci, L. & Tesco, G. Aging as a major risk for degenerative diseases of the central nervous system. Curr. Opin. Neurol. 7, 283–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl Acad. Sci. USA 106, 14914–14919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gavilan, M. P. et al. Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell 8, 654–665 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Takeda, N. et al. Altered unfolded protein response is implicated in the age-related exacerbation of proteinuria-induced proximal tubular cell damage. Am. J. Pathol. 183, 774–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Singh, R. et al. Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes. Cell Stress Chaperones 11, 208–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gupta, R. et al. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8, 879–884 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Shoulders, M. D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013). This paper demonstrates that UPR activation can lead to decreased secretion of amyloidogenic, but not WT, TTR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cooley, C. B. et al. Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain. Proc. Natl Acad. Sci. USA 111, 13046–13051 (2014). Activation of the UPR stress-response signalling pathway transcriptionally reprogrammes the proteostasis network in the ER, enabling the detection and destruction of amyloidogenic, but not energetically normal, LCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Mu, T. W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jinwal, U. K. et al. Imbalance of Hsp70 family variants fosters tau accumulation. FASEB J. 27, 1450–1459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, A. M. et al. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat. Chem. Biol. 9, 112–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Craig, E. A. The heat-shock response. CRC Crit. Rev. Biochem. 18, 239–280 (1985).

    Article  CAS  PubMed  Google Scholar 

  154. Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  PubMed  Google Scholar 

  155. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  PubMed  CAS  Google Scholar 

  158. Shoulders, M. D., Ryno, L. M., Cooley, C. B., Kelly, J. W. & Wiseman, R. L. Broadly applicable methodology for the rapid and dosable small molecule-mediated regulation of transcription factors in human cells. J. Am. Chem. Soc. 135, 8129–8132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Calamini, B. et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 8, 185–196 (2012).

    Article  CAS  Google Scholar 

  160. Zhang, Y. Q. & Sarge, K. D. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J. Mol. Med. 85, 1421–1428 (2007). The authors demonstrate that HSR activation, which transcriptionally reprogrammes the cytosolic proteostasis network, significantly decreases killing of cells expressing mutant polyQ proteins.

    Article  CAS  PubMed  Google Scholar 

  161. Bersuker, K., Hipp, M. S., Calamini, B., Morimoto, R. I. & Kopito, R. R. Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. J. Biol. Chem. 288, 23633–23638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet. 10, 1307–1315 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Aridon, P. et al. Protective role of heat shock proteins in Parkinson's disease. Neurodegener. Dis. 8, 155–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Morley, J. F. & Morimoto, R. I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M. & Bonini, N. M. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Shimshek, D. R., Mueller, M., Wiessner, C., Schweizer, T. & van der Putten, P. H. The HSP70 molecular chaperone is not beneficial in a mouse model of α-synucleinopathy. PLoS ONE 5, e10014 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Pemberton, S. et al. Hsc70 protein interaction with soluble and fibrillar α-synuclein. J. Biol. Chem. 286, 34690–34699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Danzer, K. M. et al. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 25, 326–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Muchowski, P. J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA 97, 7841–7846 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mayer, M. P. et al. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7, 586–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Chafekar, S. M. et al. Pharmacological tuning of heat shock protein 70 modulates polyglutamine toxicity and aggregation. ACS Chem. Biol. 7, 1556–1564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Abisambra, J. et al. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol. Psychiatry 74, 367–374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Miyata, Y. et al. Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels. ACS Chem. Neurosci. 4, 930–939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Smith, M. C. et al. The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry 52, 5354–5364 (2013). In reference 174, the authors showed that nanomolar concentrations of the HSC70-modulating small molecule YM-01 administered to brain slices of tau transgenic mice were able to rapidly and potently reduce tau levels. These data, along with the data presented in reference 176, demonstrate that small molecules altering the HSP70–HSP40–nucleotide exchange factor pathway can affect amyloidogenic intrinsically disordered protein degradation.

    Article  CAS  PubMed  Google Scholar 

  177. Genereux, J. C. et al. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J. 34, e201488896 (2014).

    Google Scholar 

  178. Villella, A. T. et al. Inhibition of Usp14 stimulates the proteolytic degradation and clearance of misfolded proteins associated with neurodegenerative diseases. FASEB J. 27, lb131 (2013).

    Article  Google Scholar 

  179. Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010). This paper shows that inhibition of DUBs has the potential to reduce the concentration of amyloidogenic proteins via enhanced proteasome degradation of misfolded, ubiquitylated proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kanemitsu, H., Tomiyama, T. & Mori, H. Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. 350, 113–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Leissring, M. A. et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Iwata, N. et al. Metabolic regulation of brain Aβ by neprilysin. Science 292, 1550–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Meilandt, W. J. et al. Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Aβ oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J. Neurosci. 29, 1977–1986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Planque, S. A. et al. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J. Biol. Chem. 289, 13243–13258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nishiyama, Y. et al. Metal-dependent amyloid β-degrading catalytic antibody construct. J. Biotechnol. 180, 17–22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Miller, H. I., Rotman, Y., Benshaul, Y. & Ashkenaz, Y. The dissociation of amyloid filament to subunits. Israel J. Med. Sci. 4, 982–986 (1968).

    CAS  PubMed  Google Scholar 

  187. Safar, J., Roller, P. P., Gajdusek, D. C. & Gibbs, C. J. Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J. Biol. Chem. 268, 20276–20284 (1993).

    Article  CAS  PubMed  Google Scholar 

  188. Hasegawa, K., Ono, K., Yamada, M. & Naiki, H. Kinetic modeling and determination of reaction constants of Alzheimer's β-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry 41, 13489–13498 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Kristen, A. V. et al. Green tea halts progression of cardiac transthyretin amyloidosis: an observational report. Clin. Res. Cardiol. 101, 805–813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bieschke, J. et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc. Natl Acad. Sci. USA 107, 7710–7715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ehrnhoefer, D. E. et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 15, 558–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  192. Meng, F., Abedini, A., Plesner, A., Verchere, C. B. & Raleigh, D. P. The flavanol (–)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 49, 8127–8133 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Cao, P. & Raleigh, D. P. Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. Biochemistry 51, 2670–2683 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Young, L. M., Cao, P., Raleigh, D. P., Ashcroft, A. E. & Radford, S. E. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J. Am. Chem. Soc. 136, 660–670 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Hyung, S. J. et al. Insights into antiamyloidogenic properties of the green tea extract (–)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc. Natl Acad. Sci. USA 110, 3743–3748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Palhano, F. L., Lee, J., Grimster, N. P. & Kelly, J. W. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J. Am. Chem. Soc. 135, 7503–7510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Attar, A., Rahimi, F. & Bitan, G. Modulators of amyloid protein aggregation and toxicity: EGCG and Clr01. Transl Neurosci. 4, 385–409 (2013).

    Article  Google Scholar 

  198. Lorenzen, N. et al. How epigallocatechin gallate can inhibit α-synuclein oligomer toxicity in vitro. J. Biol. Chem. 289, 21299–21310 (2014).

    Article  PubMed  CAS  Google Scholar 

  199. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999). References 191–199 demonstrate that aggregate-remodelling small molecules could be useful for ameliorating amyloid diseases, as indicated by a clinical report outlined in reference 190.

    Article  CAS  PubMed  Google Scholar 

  200. Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Check, E. Nerve inflammation halts trial for Alzheimer's drug. Nature 415, 462 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med. 9, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled Phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Boche, D. et al. Consequence of Aβ immunization on the vasculature of human Alzheimer's disease brain. Brain 131, 3299–3310 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Nicoll, J. A. et al. Aβ species removal after aβ42 immunization. J. Neuropathol. Exp. Neurol. 65, 1040–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wisniewski, T. & Goni, F. Immunotherapy for Alzheimer's disease. Biochem. Pharmacol. 88, 499–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Masliah, E. et al. Passive immunization reduces behavioral and neuropathological deficits in an α-synuclein transgenic model of Lewy body disease. PLoS ONE 6, e19338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Castillo-Carranza, D. L. et al. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J. Neurosci. 34, 4260–4272 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Lindstrom, V. et al. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] α-synuclein mice. Neurobiol. Dis. 69, 134–143 (2014).

    Article  PubMed  CAS  Google Scholar 

  213. Chai, X. et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Masliah, E. et al. Effects of α-synuclein immunization in a mouse model of Parkinson's disease. Neuron 46, 857–868 (2005).

    Article  CAS  PubMed  Google Scholar 

  215. Bae, E. J. et al. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Doyle, S. M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Jackrel, M. E. et al. Potentiated Hsp104 variants antagonize diverse proteotoxic misfolding events. Cell 156, 170–182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Jackrel, M. E. & Shorter, J. Reversing deleterious protein aggregation with re-engineered protein disaggregases. Cell Cycle 13, 1379–1383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Winkler, J., Tyedmers, J., Bukau, B. & Mogk, A. Chaperone networks in protein disaggregation and prion propagation. J. Struct. Biol. 179, 152–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Hidvegi, T. et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  222. Harper, J. D. & Lansbury, P. T. Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  223. Eisele, Y. S. From soluble Aβ to progressive Aβ aggregation: could prion-like templated misfolding play a role? Brain Pathol. 23, 333–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Colby, D. W. & Prusiner, S. B. Prions. Cold Spring Harb. Perspect. Biol. 3, a006833 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Johan, K. et al. Acceleration of amyloid protein A amyloidosis by amyloid-like synthetic fibrils. Proc. Natl Acad. Sci. USA 95, 2558–2563 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Kane, M. D. et al. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006). This paper demonstrates that intracerebral injection of Aβ amyloid-containing brain extracts can induce cerebral Aβ amyloidogenesis in mice. The phenotype of amyloidosis depends on both the host and the source of the agent, suggesting the existence of polymorphic Aβ strains, indicative of prion strains. This paper and others make the case that reducing anatomical spreading would probably be an efficacious therapeutic strategy.

    Article  CAS  PubMed  Google Scholar 

  229. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Mougenot, A. L. et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33, 2225–2228 (2012).

    Article  CAS  PubMed  Google Scholar 

  231. Polymenidou, M. & Cleveland, D. W. Prion-like spread of protein aggregates in neurodegeneration. J. Exp. Med. 209, 889–893 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Prusiner, S. B. Cell biology. A unifying role for prions in neurodegenerative diseases. Science 336, 1511–1513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ahmed, Z. et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 127, 667–683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Eisele, Y. S. et al. Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. Proc. Natl Acad. Sci. USA 106, 12926–12931 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hamaguchi, T. et al. The presence of Aβ seeds, and not age per se, is critical to the initiation of Aβ deposition in the brain. Acta Neuropathol. 123, 31–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  236. Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci. 33, 1024–1037 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 11, 219–225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Eleuteri, S. et al. Novel therapeutic strategy for neurodegeneration by blocking Aβ seeding mediated aggregation in models of Alzheimer's disease. Neurobiol. Dis. 74, 144–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  241. Yang, W., Dunlap, J. R., Andrews, R. B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).

    Article  CAS  PubMed  Google Scholar 

  242. Eisele, Y. S. et al. Multiple factors contribute to the peripheral induction of cerebral β-amyloidosis. J. Neurosci. 34, 10264–10273 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Clavaguera, F. et al. Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol. 127, 299–301 (2014).

    Article  PubMed  Google Scholar 

  244. Duran-Aniotz, C. et al. Aggregate-depleted brain fails to induce Aβ deposition in a mouse model of Alzheimer's disease. PLoS ONE 9, e89014 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Stohr, J. et al. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. Proc. Natl Acad. Sci. USA 109, 11025–11030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Zhang, Z. et al. De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB J. 27, 4768–4775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wang, F., Wang, X., Yuan, C. G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Guo, J. L. & Lee, V. M. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 587, 717–723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  250. Aguzzi, A., Heikenwalder, M. & Polymenidou, M. Insights into prion strains and neurotoxicity. Nat. Rev. Mol. Cell Biol. 8, 552–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  251. Bessen, R. A. & Marsh, R. F. Biochemical and physical properties of the prion protein from 2 strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Casacciabonnefil, P., Kascsak, R. J., Fersko, R., Callahan, S. & Carp, R. I. Brain regional distribution of prion protein PrP27-30 in mice stereotaxically microinjected with different strains of scrapie. J. Infect. Dis. 167, 7–12 (1993).

    Article  CAS  Google Scholar 

  253. Dearmond, S. J., Yang, S. L. & Prusiner, S. B. The sites of PrP(Sc) deposition in the brain are prion strain-specific. J. Neuropathol. Exp. Neurol. 52, 293 (1993).

    Article  Google Scholar 

  254. Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. 14, 1017–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Stohr, J. et al. Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice. Proc. Natl Acad. Sci. USA 111, 10329–10334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Watts, J. C. et al. Serial propagation of distinct strains of Aβ prions from Alzheimer's disease patients. Proc. Natl Acad. Sci. USA 111, 10323–10328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  260. Bousset, L. et al. Structural and functional characterization of two α-synuclein strains. Nat. Commun. 4, 2575 (2013).

    Article  PubMed  CAS  Google Scholar 

  261. Langer, F. et al. Soluble Aβ seeds are potent inducers of cerebral β-amyloid deposition. J. Neurosci. 31, 14488–14495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  264. Cohen, A. S. Amyloidosis. N. Engl. J. Med. 277, 522–530 (1967).

    Article  CAS  PubMed  Google Scholar 

  265. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 12, 383–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  266. Selkoe, D. J. The molecular pathology of Alzheimer's disease. Neuron 6, 487–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  267. Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  268. Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer's disease: the challenge of the second century. Sci. Transl Med. 3, 77sr1 (2011).

    PubMed  PubMed Central  Google Scholar 

  269. Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 60, 1495–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  270. Rowe, C. C. et al. Imaging β-amyloid burden in aging and dementia. Neurology 68, 1718–1725 (2007).

    Article  CAS  PubMed  Google Scholar 

  271. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  272. Walsh, D. M. & Selkoe, D. J. Aβ oligomers — a decade of discovery. J. Neurochem. 101, 1172–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  273. Jack, C. R. Jr et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Blake, C. C., Geisow, M. J., Oatley, S. J., Rerat, B. & Rerat, C. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. J. Mol. Biol. 121, 339–356 (1978).

    Article  CAS  PubMed  Google Scholar 

  275. Hornberg, A., Eneqvist, T., Olofsson, A., Lundgren, E. & Sauer-Eriksson, A. E. A comparative analysis of 23 structures of the amyloidogenic protein transthyretin. J. Mol. Biol. 302, 649–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  276. Hamilton, J. A. & Benson, M. D. Transthyretin: a review from a structural perspective. Cell. Mol. Life Sci. 58, 1491–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  277. Schneider, F., Hammarstrom, P. & Kelly, J. W. Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 10, 1606–1613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Monaco, H. L., Rizzi, M. & Coda, A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268, 1039–1041 (1995).

    Article  CAS  PubMed  Google Scholar 

  279. Purkey, H. E., Dorrell, M. I. & Kelly, J. W. Evaluating the binding selectivity of transthyretin amyloid fibril inhibitors in blood plasma. Proc. Natl Acad. Sci. USA 98, 5566–5571 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Saraiva, M. J. M. Transthyretin mutations in health and disease. Hum. Mut. 5, 191–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  281. Sekijima, Y. et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 121, 73–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  282. Hammarstrom, P., Jiang, X., Hurshman, A. R., Powers, E. T. & Kelly, J. W. Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16427–16432 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Lai, Z., Colon, W. & Kelly, J. W. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35, 6470–6482 (1996).

    Article  CAS  PubMed  Google Scholar 

  284. Jiang, X. et al. An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40, 11442–11452 (2001).

    Article  CAS  PubMed  Google Scholar 

  285. Hurshman Babbes, A. R., Powers, E. T. & Kelly, J. W. Quantification of the thermodynamically linked quaternary and tertiary structural stabilities of transthyretin and its disease-associated variants: the relationship between stability and amyloidosis. Biochemistry 47, 6969–6984 (2008).

    Article  CAS  PubMed  Google Scholar 

  286. Benson, M. D. Familial amyloidotic polyneuropathy. Trends Neurosci. 12, 88–92 (1989).

    Article  CAS  PubMed  Google Scholar 

  287. Rapezzi, C. et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat. Rev. Cardiol. 7, 398–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  288. Dharmarajan, K. & Maurer, M. S. Transthyretin cardiac amyloidoses in older North Americans. J. Am. Geriatr. Soc. 60, 765–774 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Miller, A. L., Falk, R. H., Levy, B. D. & Loscalzo, J. A heavy heart. N. Engl. J. Med. 363, 1464–1470 (2010).

    Article  CAS  PubMed  Google Scholar 

  290. Ng, B., Connors, L. H., Davidoff, R., Skinner, M. & Falk, R. H. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch. Intern. Med. 165, 1425–1429 (2005).

    Article  PubMed  Google Scholar 

  291. Vidal, R. et al. Meningocerebrovascular amyloidosis associated with a novel transthyretin mis-sense mutation at codon 18 (TTRD18G). Am. J. Pathol. 148, 361–366 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Westermark, P., Sletten, K., Johansson, B. & Cornwell, G. G. 3rd. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc. Natl Acad. Sci. USA 87, 2843–2845 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Falk, R. H. Cardiac amyloidosis: a treatable disease, often overlooked. Circulation 124, 1079–1085 (2011).

    Article  PubMed  Google Scholar 

  294. Hornstrup, L. S., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjaerg-Hansen, A. Genetic stabilization of transthyretin, cerebrovascular disease, and life expectancy. Arterioscler. Thromb. Vas. Biol. 33, 1441–1447 (2013).

    Article  CAS  Google Scholar 

  295. Kuroda, T. et al. Treatment with biologic agents improves the prognosis of patients with rheumatoid arthritis and amyloidosis. J. Rheumatol. 39, 1348–1354 (2012).

    Article  CAS  PubMed  Google Scholar 

  296. Nakamura, T., Higashi, S., Tomoda, K., Tsukano, M. & Baba, S. Efficacy of etanercept in patients with AA amyloidosis secondary to rheumatoid arthritis. Clin. Exp. Rheumatol. 25, 518–522 (2007).

    CAS  PubMed  Google Scholar 

  297. Hall, A. & Patel, T. R. in Progress in Medicinal Chemistry (eds Lawton, G. & Witty, D. R.) 101–145 (Elsevier, 2014).

    Google Scholar 

  298. Kastritis, E. et al. Treatment of light chain (AL) amyloidosis with the combination of bortezomib and dexamethasone. Haematologica 92, 1351–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  299. Sitia, R., Palladini, G. & Merlini, G. Bortezomib in the treatment of AL amyloidosis: targeted therapy? Haematologica 92, 1302–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  300. Holmgren, G. et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin. Genet. 40, 242–246 (1991).

    Article  CAS  PubMed  Google Scholar 

  301. Benson, M. D. et al. Suppression of choroid plexus transthyretin levels by antisense oligonucleotide treatment. Amyloid 17, 43–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  302. DeTure, M., Hicks, C. & Petrucelli, L. Targeting heat shock proteins in tauopathies. Curr. Alzheimer Res. 7, 677–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  303. Herbst, M. & Wanker, E. E. Small molecule inducers of heat-shock response reduce polyQ-mediated huntingtin aggregation. A possible therapeutic strategy. Neurodegener. Dis. 4, 254–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  304. Wang, Q., Guo, J., Jiao, P., Liu, H. & Yao, X. Exploring the influence of EGCG on the β-sheet-rich oligomers of human islet amyloid polypeptide (hIAPP1-37) and identifying its possible binding sites from molecular dynamics simulation. PLoS ONE 9, e94796 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Schenk, D. Opinion: amyloid-β immunotherapy for Alzheimer's disease: the end of the beginning. Nat. Rev. Neurosci. 3, 824–828 (2002).

    Article  CAS  PubMed  Google Scholar 

  306. Schenk, D. Hopes remain for an Alzheimer's vaccine. Nature 431, 398 (2004).

    Article  CAS  PubMed  Google Scholar 

  307. Liu-Seifert, D. et al. Delayed-start analysis: Mild Alzheimer's disease patients in solanezumab trials, 3.5 years. Alzheimers Dement. (NY) http://dx.doi.org/10.1016/j.trci.2015.06.006 (2015).

Download references

Acknowledgements

The authors thank the reviewers for their critical and insightful comments that shaped their thinking and helped to improve the manuscript. Y.S.E. expresses particular thanks to M. Jucker, Tübingen, Germany, for helpful discussions and for his mentorship. The authors are supported by US National Institutes of Health grants DK46335 (to J.W.K.), AG46495 (to J.W.K.) and GM101644 (to E.T.P.). Y.S.E. is supported by a postdoctoral fellowship from the German Academic Exchange Service (DAAD). The authors apologize to colleagues whose work they were unable to include owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yvonne S. Eisele or Jeffery W. Kelly.

Ethics declarations

Competing interests

J.W.K. and E.T.P. discovered tafamidis, and J.W.K. founded FoldRx to commercialize it. FoldRx is now owned by Pfizer, in which both J.W.K. and E.T.P. have a financial interest. J.W.K. is a shareholder and a paid consultant for Pfizer, which sells tafamidis. J.W.K. and E.T.P. receive royalty payments from the sale of tafamidis. Y.S.E., C.M., C.F., S.E.E. and R.L.W. declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Amyloid fibrils

Lateral assemblies of protein aggregates adopting a cross-β-sheet structure. These aggregates bind to Congo red, thioflavin T and analogous aromatics.

Amyloidogenesis

The process of protein aggregation in an organism whereby physical chemical forces and biological modifiers together influence the aggregate structural ensembles afforded.

Proteostasis network

The macromolecular machinery that generates, folds, moves and degrades the proteome. Proteostasis network components include chaperones, the proteasome, trafficking machinery and various enzymes — such as disulfide isomerases — that act on the proteome.

Nucleus

An energetically unfavourable, sparsely populated, typically oligomeric species that is thought to be rich in β-sheet structure. Nucleus formation is the rate-limiting step for efficient aggregation in a nucleation-dependent polymerization; it is followed by rapid monomer addition, which produces a seed.

Seeds

Stable aggregates that result from the addition of monomers to a nucleus or that arise from the fragmentation of fibrils. Seeds enable homotypic protein aggregation without a requirement for nucleus formation, as seeded aggregation bypasses the requirement for a nucleation step.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisele, Y., Monteiro, C., Fearns, C. et al. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14, 759–780 (2015). https://doi.org/10.1038/nrd4593

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4593

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research