Abstract
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES–rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66, 1476–1483 (1992).
Bukh, J., Purcell, R.H. & Miller, R.H. Sequence analysis of the 5′ noncoding region of hepatitis C virus. Proc. Natl. Acad. Sci. USA 89, 4942–4946 (1992).
Simmonds, P. et al. Sequence variability in the 5′ non-coding region of hepatitis C virus: identification of a new virus type and restrictions on sequence diversity. J. Gen. Virol. 74, 661–668 (1993).
Fraser, C.S. & Doudna, J.A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat. Rev. Microbiol. 5, 29–38 (2007).
Jackson, R.J., Hellen, C.U. & Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).
Kieft, J.S., Zhou, K., Jubin, R. & Doudna, J.A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).
Kolupaeva, V.G., Pestova, T.V. & Hellen, C.U. An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J. Virol. 74, 6242–6250 (2000).
Lytle, J.R., Wu, L. & Robertson, H.D. The ribosome binding site of hepatitis C virus mRNA. J. Virol. 75, 7629–7636 (2001).
Lytle, J.R., Wu, L. & Robertson, H.D. Domains on the hepatitis C virus internal ribosome entry site for 40s subunit binding. RNA 8, 1045–1055 (2002).
Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J. & Hellen, C.U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).
Otto, G.A. & Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).
Ji, H., Fraser, C.S., Yu, Y., Leary, J. & Doudna, J.A. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc. Natl. Acad. Sci. USA 101, 16990–16995 (2004).
Fraser, C.S., Hershey, J.W. & Doudna, J.A. The pathway of hepatitis C virus mRNA recruitment to the human ribosome. Nat. Struct. Mol. Biol. 16, 397–404 (2009).
Locker, N., Easton, L.E. & Lukavsky, P.J. HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. EMBO J. 26, 795–805 (2007).
Terenin, I.M., Dmitriev, S.E., Andreev, D.E. & Shatsky, I.N. Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat. Struct. Mol. Biol. 15, 836–841 (2008).
Kim, J.H., Park, S.M., Park, J.H., Keum, S.J. & Jang, S.K. eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. EMBO J. 30, 2454–2464 (2011).
Kieft, J.S. et al. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J. Mol. Biol. 292, 513–529 (1999).
Lukavsky, P.J. Structure and function of HCV IRES domains. Virus Res. 139, 166–171 (2009).
Sizova, D.V., Kolupaeva, V.G., Pestova, T.V., Shatsky, I.N. & Hellen, C.U. Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J. Virol. 72, 4775–4782 (1998).
Honda, M., Brown, E.A. & Lemon, S.M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968 (1996).
Berry, K.E., Waghray, S. & Doudna, J.A. The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit. RNA 16, 1559–1569 (2010).
Filbin, M.E. & Kieft, J.S. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove. RNA 17, 1258–1273 (2011).
Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291, 1959–1962 (2001).
Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J.D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706 (2005).
Fukushi, S. et al. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem. 276, 20824–20826 (2001).
Wower, J., Scheffer, P., Sylvers, L.A., Wintermeyer, W. & Zimmermann, R.A. Topography of the E site on the Escherichia coli ribosome. EMBO J. 12, 617–623 (1993).
Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5-Å resolution. Science 292, 883–896 (2001).
Döring, T., Mitchell, P., Osswald, M., Bochkariov, D. & Brimacombe, R. The decoding region of 16S RNA; a cross-linking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. EMBO J. 13, 2677–2685 (1994).
Odreman-Macchioli, F., Baralle, F.E. & Buratti, E. Mutational analysis of the different bulge regions of hepatitis C virus domain II and their influence on internal ribosome entry site translational ability. J. Biol. Chem. 276, 41648–41655 (2001).
Kalliampakou, K.I., Psaridi-Linardaki, L. & Mavromara, P. Mutational analysis of the apical region of domain II of the HCV IRES. FEBS Lett. 511, 79–84 (2002).
Passmore, L.A. et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26, 41–50 (2007).
Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).
Lukavsky, P.J., Kim, I., Otto, G.A. & Puglisi, J.D. Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10, 1033–1038 (2003).
Pestova, T.V., Hellen, C.U. & Shatsky, I.N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell Biol. 16, 6859–6869 (1996).
Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).
Hartz, D., McPheeters, D.S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988).
Devaraj, A., Shoji, S., Holbrook, E.D. & Fredrick, K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15, 255–265 (2009).
Monro, R.E. & Marcker, K.A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. Mol. Biol. 25, 347–350 (1967).
Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).
Dibrov, S.M. et al. Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc. Natl. Acad. Sci. USA 109, 5223–5228 (2012).
Robert, F. & Brakier-Gingras, L. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome. J. Biol. Chem. 278, 44913–44920 (2003).
Galkin, O. et al. Roles of the negatively charged N-terminal extension of Saccharomyces cerevisiae ribosomal protein S5 revealed by characterization of a yeast strain containing human ribosomal protein S5. RNA 13, 2116–2128 (2007).
Geigenmüller, U. & Nierhaus, K.H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 9, 4527–4533 (1990).
Petropoulos, A.D. & Green, R. Further in vitro exploration fails to support the allosteric three-site model. J. Biol. Chem. 287, 11642–11648 (2012).
Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).
Chen, C. et al. Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc. Natl. Acad. Sci. USA 108, 16980–16985 (2011).
Malygin, A.A., Yanshina, D.D. & Karpova, G.G. Interactions of human ribosomal proteins S16 and S5 with an 18S rRNA fragment containing their binding sites. Biochimie 91, 1180–1186 (2009).
Ian'shina, D.D., Malygin, A.A. & Karpova, G.G. Binding of human ribosomal protein S5 with the 18S rRNA fragment 1203–1236/1521–1698 [in Russian]. Mol. Biol. (Mosk.) 40, 460–467 (2006).
Yu, Y. et al. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res. 37, 5167–5182 (2009).
Antúnez de Mayolo, P. & Woolford, J.L. Jr. Interactions of yeast ribosomal protein rpS14 with RNA. J. Mol. Biol. 333, 697–709 (2003).
Lomakin, I.B., Kolupaeva, V.G., Marintchev, A., Wagner, G. & Pestova, T.V. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev. 17, 2786–2797 (2003).
Acker, M.G. et al. Kinetic analysis of late steps of eukaryotic translation initiation. J. Mol. Biol. 385, 491–506 (2009).
Fringer, J.M., Acker, M.G., Fekete, C.A., Lorsch, J.R. & Dever, T.E. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol. Cell. Biol. 27, 2384–2397 (2007).
van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).
Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).
Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0-Å resolution. Science 334, 1524–1529 (2011).
Stoneley, M., Paulin, F.E., Le Quesne, J.P., Chappell, S.A. & Willis, A.E. C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene 16, 423–428 (1998).
Keel, A.Y., Easton, L.E., Lukavsky, P.J. & Kieft, J.S. Large-scale native preparation of in vitro transcribed RNA. Methods Enzymol. 469, 3–25 (2009).
Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol. Proced. Online 6, 23–34 (2004).
Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).
Sousa, D. & Grigorieff, N. Ab initio resolution measurement for single particle structures. J. Struct. Biol. 157, 201–210 (2007).
Kleywegt, G.J. & Jones, T.A. xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D Biol. Crystallogr. 52, 826–828 (1996).
Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Acknowledgements
The authors thank the members of J.S.K.'s lab and R. Davis, D. Bentley, D. Barton and T. Evans for useful suggestions and discussions, and M. Ruehle, T. Blumenthal, T. Cech and M. Johnston for critical reading of this manuscript. We also thank C. Spahn (Institut für Medizinische Physik und Biophysik, Charite–Universitätsmedizin Berlin) for data files and advice with structural modeling; P. Lukavsky (Central European Institute of Technology, Masaryk University) for NMR resonance assignments and the pUC18 plasmid for toeprinting experiments; A.Willis (Medical Research Council Toxicology Unit) for the pRL plasmid for LUC experiments and G. Armstrong and E. Eisenmesser for assistance in NMR data collection and processing. This work was supported by US National Institutes of Health grant GM081346 to J.S.K. M.E.F. was supported as an American Heart Association predoctoral fellow (grant no. 0815655G). J.S.K. is an Early Career Scientist of the Howard Hughes Medical Institute. T.G.'s laboratory is supported by the Howard Hughes Medical Institute.
Author information
Authors and Affiliations
Contributions
M.E.F. conducted all biochemical experiments. J.S.K. and M.E.F. conducted and analyzed the NMR experiments. B.S.V., D.S., T.G. and J.S.K. conducted the cryo-EM experiments, with structure calculation by B.S.V. Results were interpreted by M.E.F., B.S.V., J.S.K. and T.G. M.E.F. and J.S.K. designed the overall study and wrote the manuscript. All authors contributed to figure construction.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Filbin, M., Vollmar, B., Shi, D. et al. HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation. Nat Struct Mol Biol 20, 150–158 (2013). https://doi.org/10.1038/nsmb.2465
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nsmb.2465