Abstract
The auditory system encodes sound by decomposing the amplitude signal arriving at the ear into multiple frequency bands whose center frequencies and bandwidths are approximately exponential functions of the distance from the stapes. This organization is thought to result from the adaptation of cochlear mechanisms to the animal's auditory environment. Here we report that several basic auditory nerve fiber tuning properties can be accounted for by adapting a population of filter shapes to encode natural sounds efficiently. The form of the code depends on sound class, resembling a Fourier transformation when optimized for animal vocalizations and a wavelet transformation when optimized for non-biological environmental sounds. Only for the combined set does the optimal code follow scaling characteristics of physiological data. These results suggest that auditory nerve fibers encode a broad set of natural sounds in a manner consistent with information theoretic principles.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Barlow, H. B. Possible principles underlying the transformation of sensory messages. in Sensory Communication (ed. Rosenbluth, W. A.) 217–234 (MIT Press, Cambridge, 1961).
Kiang, N. Y.-S., Watanabe, T., Thomas, E. C. & Clark, L. F. Discharge Patterns of Single Fibers in the Cat's Auditory Nerve (MIT Press, Cambridge, Massachusetts, 1965).
Evans, E. F. Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. in Psychophysics and Physiology of Hearing (eds. Evans, E. F. & Wilson, J. P.) 185–192 (Academic, New York, 1977).
de Boer, E. & de Jongh, H. R. On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J. Acoust. Soc. Am. 63, 115–135 (1978).
Carney, L. H. & Yin, T. C. T. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J. Neurophys. 60, 1653–1677 (1988).
Field, D. J. Relations between the satistics of natural images and the response properties of cortical cells. J. Optical Soc. Am. A 12, 2379–2394 (1987).
Field, D. J. What is the goal of sensory coding? Neural Comp. 6, 559–601 (1994).
Linsker, R. Perceptual neural organization—some approaches based on network models and information-theory. Annu. Rev. Neuro. 13, 257–281 (1990).
Atick, J. J. Could information-theory provide an ecological theory of sensory processing. Network Comp. Neural Sys. 3, 213–251 (1992).
Rieke, F., Bodnar, D. A. & Bialek, W. Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc. R. Soc. Lond. B Biol. Sci. 262, 259–265 (1995).
Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).
Bell, A. J. & Sejnowski, T. J. The 'independent components' of natural scenes are edge filters. Vision Res. 37, 3327–3338 (1997).
van Hateren, J. H. & Ruderman, D. L. Independent component analysis of natural images sequences yield spatiotemporal filters similar to simple cells in primary visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 265, 2315–2320 (1998).
Lewicki, M. S. & Olshausen, B. A. A probabilistic framework for the adaptation and comparison of image codes. J. Opt. Soc. Am. A 16, 1587–1601 (1999).
Comon, P. Independent component analysis, a new concept? Signal Process. 36, 287–314 (1994).
Bell, A. J. & Sejnowski, T. J. An information maximization approach to blind separation and blind deconvolution. Neural Comp. 7, 1129–1159 (1995).
Laughlin, S. B. Matching coding to scenes to enhance coding efficiency. in Physical and Biological Processing of Images (eds. Braddick, O. J. & Sleigh, A. C.) 42–72 (Springer, Berlin, 1983).
Bell, A. J. & Sejnowski, T. J. Learning the higher-order structure of a natural sound. Netw. Comput. Neural Syst. 7, 261–267 (1996).
Irino, T. & Patterson, R. D. A time-domain, level-dependent auditory filter: the gammachirp. J. Acoust. Soc. Am. 101, 412–419 (1997).
Zoharian, A. S. & Rothenberg, M. Principal-component analysis for low redundancy encoding of speech spectra. J. Acoust. Soc. Am. 69, 832–845 (1981).
Mallat, S. A Wavelet Tour of Signal Processing 2nd edn. (Academic, London, 1999).
Lewicki, M. S. & Sejnowski, T. J. Learning overcomplete representations. Neural Comput. 12, 337–365 (2000).
Moore, B. C. J. (ed.) Frequency Selectivity in Hearing (Academic, London, 1986).
Evans, E. F. Cochlear nerve and cochlear nucleus. in Handbook of Sensory Physiology Vol. 5/2 (eds. Keidel, W. D. & Neff, W. D.) 1–108 (Springer, Berlin, 1975).
Rhode, W. S. & Smith, P. H. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hearing Res. 18, 159–168 (1985).
Voss, R. F. & Clarke, J. 1/f noise in music and speech. Nature 258, 317–318 (1975).
Attias, H. & Schreiner, C. Low-order temporal statistics of natural sounds. in Advances in Neural and Information Processing Systems Vol. 9 (Morgan Kaufmann, San Mateo, California, 1997).
Furth, P. M. & Andreou, A. G. A design framework for low power analog filter banks. IEEE Trans. Circuits Syst. I 42, 966–971 (1995).
Lewicki, M. S. & Sejnowski, T. J. Coding time-varying signals using sparse, shift-invariant representations. in Advances in Neural Information Processing Systems Vol. 11, 730–736 (MIT Press, Cambridge, Massachusetts, 1999).
Brenner, N., Bialek, W. & van Steveninck, R. D. Adaptive rescaling maximizes information transmission. Neuron 26, 695–702 (2000).
Schwartz, O. & Simoncelli, E. P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).
Pearlmutter, B. A. & Parra, L. C. A context-senstive generalization of ICA. in Proceedings of the International Conference on Neural Information Processing 151–157 (Springer, Singapore, 1996).
Cardoso, J.-F. Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4, 109–111 (1997).
Emmons, L. H., Whitney, B. M. & Ross, D. L. Sounds of the neotropical rainforest mammals [audio CD] (Library of Natural Sounds, Cornell Laboratory of Ornithology, Ithaca, New York, 1997).
Amari, S., Cichocki, A. & Yang, H. H. A new learning algorithm for blind signal separation. in Advances in Neural and Information Processing Systems Vol. 8, 757–763 (Morgan Kaufmann, San Mateo, California, 1996).
Box, G. E. P. & Tiao, G. C. Bayesian Inference in Statistical Analysis (Addison-Wesley, Reading, Massachusetts, 1973).
Mallat, S. G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989).
Simoncelli, E. P. & Adelson, E. H. Noise removal via Bayesian wavelet coring in Proceedings of the 3rd IEEE International Conference on Image Processing Vol. 1, 379–382 (IEEE Signal Processing Society, Lausanne, 1996).
Acknowledgements
The author thanks C. Olson, B. Olshausen and L. Holt for discussions and feedback on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Lewicki, M. Efficient coding of natural sounds. Nat Neurosci 5, 356–363 (2002). https://doi.org/10.1038/nn831
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn831
This article is cited by
-
Audio-based event detection in the operating room
International Journal of Computer Assisted Radiology and Surgery (2024)
-
Deep neural network models of sound localization reveal how perception is adapted to real-world environments
Nature Human Behaviour (2022)
-
Efficient tactile encoding of object slippage
Scientific Reports (2022)
-
Magnetoencephalography recordings reveal the spatiotemporal dynamics of recognition memory for complex versus simple auditory sequences
Communications Biology (2022)
-
Efficient coding of cognitive variables underlies dopamine response and choice behavior
Nature Neuroscience (2022)