Abstract
Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999).
Service, R. F. New 'supercapacitor' promises to pack more electrical punch. Science 313, 902–905 (2006).
Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
Brodd, R. J. et al. Batteries, 1977 to 2002. J. Electrochem. Soc. 151, K1–K11 (2004).
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
Armand, M. & Johansson, P. Novel weakly coordinating heterocyclic anions for use in lithium batteries. J. Power Sources 178, 821–825 (2008).
Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).
US Department of Energy. Basic Research Needs for Electrical Energy Storage <www.sc.doe.gov/bes/reports/abstracts.html#EES2007> (2007).
Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).
Miller, J. R. & Burke, A. F. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interf. 17, 53–57 (2008).
Pandolfo, A. G. & Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006).
Gogotsi, Y. (ed.) Carbon Nanomaterials (CRC, 2006).
Kyotani, T., Chmiola, J. & Gogotsi, Y. in Carbon Materials for Electrochemical Energy Storage Systems (eds Beguin, F. & Frackowiak, E.) Ch. 13 (CRC/Taylor and Francis, in the press).
Futaba, D. N. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 5, 987–994 (2006).
Portet, C., Chmiola, J., Gogotsi, Y., Park, S. & Lian, K. Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta, 53, 7675–7680 (2008).
Yang, C.-M. et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20–21 (2007).
Niu, C., Sichel, E. K., Hoch, R., Moy, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480 (1997).
Azaïs, P. et al. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171, 1046–1053 (2007).
Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F. & Chesneau, M. Studies and characterization of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001).
Shi, H. Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633–1639 (1995).
Qu, D. & Shi, H. Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998).
Qu, D. Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403–411 (2002).
Kim, Y. J. et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 42, 1491 (2004).
Izutsu, K. Electrochemistry in Nonaqueous Solution (Wiley, 2002).
Marcus, Y. Ion Solvation (Wiley, 1985).
Jurewicz, K. et al. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 65, 287 (2004).
Fernández, J. A. et al. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 175, 675 (2008).
Fuertes, A. B., Lota, G., Centeno, T. A. & Frackowiak, E. Templated mesoporous carbons for supercapacitor application. Electrochim. Acta 50, 2799 (2005).
Salitra, G., Soffer, A., Eliad, L., Cohen, Y. & Aurbach, D. Carbon electrodes for double-layer capacitors. I. Relations between ion and pore dimensions. J. Electrochem. Soc. 147, 2486–2493 (2000).
Vix-Guterl, C. et al. Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005).
Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves. Langmuir 21, 3198–3202 (2005).
Eliad, L. et al. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors. Appl. Phys. A 82, 607–613 (2006).
Arulepp, M. et al. The advanced carbide-derived carbon based supercapacitor. J. Power Sources 162, 1460–1466 (2006).
Arulepp, M. et al. Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources 133, 320–328 (2004).
Raymundo-Pinero, E., Kierzek, K., Machnikowski, J. & Beguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498–2507 (2006).
Janes, A. & Lust, E. Electrochemical characteristics of nanoporous carbide-derived carbon materials in various nonaqueous electrolyte solutions. J. Electrochem. Soc. 153, A113–A116 (2006).
Shanina, B. D. et al. A study of nanoporous carbon obtained from ZC powders (Z = Si, Ti, and B). Carbon 41, 3027–3036 (2003).
Chmiola, J., Dash, R., Yushin, G. & Gogotsi, Y. Effect of pore size and surface area of carbide derived carbon on specific capacitance. J. Power Sources 158, 765–772 (2006).
Dash, R. et al. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44, 2489–2497 (2006).
Urbonaite, S. et al. EELS studies of carbide derived carbons. Carbon 45, 2047–2053 (2007).
Gogotsi, Y. et al. Nanoporous carbide-derived carbon with tunable pore size. Nature Mater. 2, 591–594 (2003).
Chmiola, J. et al. Anomalous increase in carbon capacitance at pore size below 1 nm. Science 313, 1760–1763 (2006).
Huang, J. S., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008).
Huang, J., Sumpter, B. G. & Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbons, and electrolytes. Chem. Eur. J. 14, 6614–6626 (2008).
Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. & Gogotsi, Y. Desolvation of ions in subnanometer pores, its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 47, 3392–3395 (2008).
Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).
Weigand, G., Davenport, J. W., Gogotsi, Y. & Roberto, J. in Scientific Impacts and Opportunities for Computing Ch. 5, 29–35 (DOE Office of Science, 2008).
Wu, N.-L. Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75, 6–11 (2002).
Brousse, T. et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171–A2180 (2006).
Rudge, A., Raistrick, I., Gottesfeld, S. & Ferraris, J. P. Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994).
Zheng, J. P. & Jow, T. R. High energy and high power density electrochemical capacitors. J. Power Sources 62, 155–159 (1996).
Lee, H. Y. & Goodenough, J. B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999).
Laforgue, A., Simon, P. & Fauvarque, J.-F. Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synth. Met. 123, 311–319 (2001).
Naoi, K., Suematsu, S. & Manago, A. Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420–426 (2000).
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).
Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).
Machida, K., Furuuchi, K., Min, M. & Naoi, K. Mixed proton–electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72, 402–404 (2004).
Toupin, M., Brousse, T. & Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).
Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y. & Takasu, Y. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42, 4092–4096 (2003).
Miller, J. M., Dunn, B., Tran, T. D. & Pekala, R. W. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309–L311 (1997).
Min, M., Machida, K., Jang, J. H. & Naoi, K. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334–A338 (2006).
Wang, Y., Takahashi, K., Lee, K. H. & Cao, G. Z. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16, 1133–1144 (2006).
Naoi, K. & Simon, P. New materials and new configurations for advanced electrochemical capacitors. Electrochem. Soc. Interf. 17, 34–37 (2008).
Fischer, A. E., Pettigrew, K. A., Rolison, D. R., Stroud, R. M. & Long, J. W. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007).
Kazaryan, S. A., Razumov, S. N., Litvinenko, S. V., Kharisov, G. G. & Kogan, V. I. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters. J. Electrochem. Soc. 153, A1655–A1671 (2006).
Amatucci, G. G., Badway, F. & DuPasquier, A. in Intercalation Compounds for Battery Materials (ECS Proc. Vol. 99) 344–359 (Electrochemical Society, 2000).
Burke, A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53, 1083–1091 (2007).
Portet, C., Taberna, P. L., Simon, P. & Laberty-Robert, C. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 49, 905–912 (2004).
Talapatra, S. et al. Direct growth of aligned carbon nanotubes on bulk metals. Nature Nanotech. 1, 112–116 (2006).
Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).
Jang, J. H., Machida, K., Kim, Y. & Naoi, K. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim. Acta. 52, 1733 (2006).
Cambaz, Z. G., Yushin, G., Osswald, S., Mochalin, V. & Gogotsi, Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46, 841–849 (2008).
Tsuda, T. & Hussey, C. L. Electrochemical applications of room-temperature ionic liquids. Electrochem. Soc. Interf. 16, 42–49 (2007).
Balducci, A. et al. High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165, 922–927 (2007).
Balducci, A. et al. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta 50, 2233–2237 (2005).
Balducci, A., Soavi, F. & Mastragostino, M. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A 82, 627–632 (2006).
Endres, F., MacFarlane, D. & Abbott, A. (eds) Electrodeposition from Ionic Liquids (Wiley-VCH, 2008).
Faggioli, E. et al. Supercapacitors for the energy management of electric vehicles. J. Power Sources 84, 261–269 (1999).
Chmiola, J. & Gogotsi, Y. Supercapacitors as advanced energy storage devices. Nanotechnol. Law Bus. 4, 577–584 (2007).
Portet, C., Yushin, G. & Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007).
Acknowledgements
We thank our students and collaborators, including J. Chmiola, C. Portet, R. Dash and G. Yushin (Drexel University), P. L. Taberna and C. Largeot (Université Paul Sabatier), and J. E. Fischer (University of Pennsylvania) for experimental help and discussions, H. Burnside (Drexel University) for editing the manuscript and S. Cassou (Toulouse) for help with illustrations. This work was partially funded through the Department of Energy, Office of Basic Energy Science, grant DE-FG01-05ER05-01, and through the Délégation Générale pour l'Armement.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Simon, P., Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
Issue Date:
DOI: https://doi.org/10.1038/nmat2297
This article is cited by
-
Sub-millisecond lithiothermal synthesis of graphitic meso–microporous carbon
Nature Communications (2024)
-
Construction of chitosan-supported nickel cobaltite composite for efficient electrochemical capacitor and water-splitting applications
Scientific Reports (2024)
-
Synthesis of Zinc Oxide nano bars incorporated with activated Carbon (ZnO NBs/AC) nanocomposites for high specific capacitance value
Journal of Sol-Gel Science and Technology (2024)
-
Novel promising aqueous electrolytes for manganese dioxide/stainless steel pseudocapacitor electrode
Journal of Materials Science: Materials in Electronics (2024)
-
Enhanced the electrochemical performance of CoMgS nanocomposite electrode with the doping of ZnO for supercapacitor-battery hybrid device and photochemical activity
Journal of Applied Electrochemistry (2024)