Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells

Abstract

Interleukin 27 (IL-27) was first characterized as a proinflammatory cytokine with T helper type 1–inducing activity. However, subsequent work has demonstrated that mice deficient in IL-27 receptor (IL-27Rα) show exacerbated inflammatory responses to a variety of challenges, suggesting that IL-27 has important immunoregulatory functions in vivo. Here we demonstrate that IL-27Rα-deficient mice were hypersusceptible to experimental autoimmune encephalomyelitis and generated more IL-17-producing T helper cells. IL-27 acted directly on effector T cells to suppress the development of IL-17-producing T helper cells mediated by IL-6 and transforming growth factor-β. This suppressive activity was dependent on the transcription factor STAT1 and was independent of interferon-γ. Finally, IL-27 suppressed IL-6-mediated T cell proliferation. These data provide a mechanistic explanation for the IL-27-mediated immune suppression noted in several in vivo models of inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Il27ra−/− mice develop severe EAE.
Figure 2: Cytokine production in response to MOG(35-55).
Figure 3: Increased IL-17 production in the CNS of Il27ra−/− mice during EAE.
Figure 4: TH-17 cell differentiation is suppressed by IL-27.
Figure 5: IL-27 acts directly on CD4+ T cells to suppress IL-17 production.
Figure 6: Suppression of TH-17 cell differentiation by IL-27 is dependent on activation of STAT1.
Figure 7: IL-27 antagonizes IL-6-induced proliferation.

Similar content being viewed by others

References

  1. Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002).

    Article  CAS  Google Scholar 

  2. Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R.A. IL-27 and IFN-α signal via STAT1 and STAT3 and induce T-bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res. 23, 513–522 (2003).

    Article  CAS  Google Scholar 

  3. Lucas, S., Ghilardi, N., Li, J. & de Sauvage, F.J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through STAT1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 100, 15047–15052 (2003).

    Article  CAS  Google Scholar 

  4. Takeda, A. et al. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J. Immunol. 170, 4886–4890 (2003).

    Article  CAS  Google Scholar 

  5. Chen, Q. et al. Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 407, 916–920 (2000).

    Article  CAS  Google Scholar 

  6. Pflanz, S. et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 172, 2225–2231 (2004).

    Article  CAS  Google Scholar 

  7. Sprecher, C.A. et al. Cloning and characterization of a novel class I cytokine receptor. Biochem. Biophys. Res. Commun. 246, 82–90 (1998).

    Article  CAS  Google Scholar 

  8. Holscher, C. et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J. Immunol. 174, 3534–3544 (2005).

    Article  Google Scholar 

  9. Pearl, J.E. et al. IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J. Immunol. 173, 7490–7496 (2004).

    Article  CAS  Google Scholar 

  10. Villarino, A. et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19, 645–655 (2003).

    Article  CAS  Google Scholar 

  11. Yoshida, H. et al. WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity 15, 569–578 (2001).

    Article  CAS  Google Scholar 

  12. Artis, D. et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J. Immunol. 173, 5626–5634 (2004).

    Article  CAS  Google Scholar 

  13. Hamano, S. et al. WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19, 657–667 (2003).

    Article  CAS  Google Scholar 

  14. Miyazaki, Y. et al. Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX-1-deficient mice. J. Immunol. 175, 2401–2407 (2005).

    Article  CAS  Google Scholar 

  15. Yamanaka, A. et al. Hyperproduction of proinflammatory cytokines by WSX-1-deficient NKT cells in concanavalin A-induced hepatitis. J. Immunol. 172, 3590–3596 (2004).

    Article  CAS  Google Scholar 

  16. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  17. McKenzie, B.S., Kastelein, R.A. & Cua, D.J. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 27, 17–23 (2006).

    Article  CAS  Google Scholar 

  18. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  19. Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  20. Infante-Duarte, C., Horton, H.F., Byrne, M.C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol. 165, 6107–6115 (2000).

    Article  CAS  Google Scholar 

  21. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin 23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin 17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  Google Scholar 

  22. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  23. Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  Google Scholar 

  24. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  25. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  26. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  27. Villarino, A.V. et al. IL-27 limits IL-2 production during Th1 differentiation. J. Immunol. 176, 237–247 (2006).

    Article  CAS  Google Scholar 

  28. Owaki, T. et al. IL-27 suppresses CD28-mediated IL-2 production through suppressor of cytokine signaling 3. J. Immunol. 176, 2773–2780 (2006).

    Article  CAS  Google Scholar 

  29. Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    Article  CAS  Google Scholar 

  30. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  Google Scholar 

  31. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  32. Sergejeva, S., Ivanov, S., Lotvall, J. & Linden, A. Interleukin-17 as a recruitment and survival factor for airway macrophages in allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 33, 248–253 (2005).

    Article  CAS  Google Scholar 

  33. McQualter, J.L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–882 (2001).

    Article  CAS  Google Scholar 

  34. Samoilova, E.B., Horton, J.L., Hilliard, B., Liu, T.S. & Chen, Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol. 161, 6480–6486 (1998).

    CAS  PubMed  Google Scholar 

  35. Cho, M.L. et al. STAT3 and NF-κB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J. Immunol. 176, 5652–5661 (2006).

    Article  CAS  Google Scholar 

  36. Chen, Z. et al. Selective regulatory function of SOCS3 in the formation of IL-17-secreting T cells. Proc. Natl. Acad. Sci. USA 103, 8137–8142 (2006).

    Article  CAS  Google Scholar 

  37. Schimpl, A. et al. IL-2 and autoimmune disease. Cytokine Growth Factor Rev. 13, 369–378 (2002).

    Article  CAS  Google Scholar 

  38. Honda, K. et al. T helper 1-inducing property of IL-27/WSX-1 signaling is required for the induction of experimental colitis. Inflamm. Bowel Dis. 11, 1044–1052 (2005).

    Article  Google Scholar 

  39. Jebbari, H., Roberts, C.W., Ferguson, D.J., Bluethmann, H. & Alexander, J. A protective role for IL-6 during early infection with Toxoplasma gondii. Parasite Immunol. 20, 231–239 (1998).

    Article  CAS  Google Scholar 

  40. Suzuki, Y. et al. Impaired resistance to the development of toxoplasmic encephalitis in interleukin-6-deficient mice. Infect. Immun. 65, 2339–2345 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao, W. & Pereira, M.A. Interleukin-6 is required for parasite specific response and host resistance to Trypanosoma cruzi. Int. J. Parasitol. 32, 167–170 (2002).

    Article  CAS  Google Scholar 

  42. Kelly, M.N. et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun. 73, 617–621 (2005).

    Article  CAS  Google Scholar 

  43. Doganci, A., Sauer, K., Karwot, R. & Finotto, S. Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin. Rev. Allergy Immunol. 28, 257–270 (2005).

    Article  CAS  Google Scholar 

  44. Sedgwick, J.D. et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. USA 88, 7438–7442 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Ouyang and B. Irving for critical reading of the manuscript; N. Pal and the Genentech Histology Laboratory for processing and staining of histological specimens; and R. Scott and S. Liu for animal husbandry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Ghilardi.

Ethics declarations

Competing interests

The authors are employed or were previously employed by Genentech and may or may not benefit financially from the publication of this paper.

Supplementary information

Supplementary Fig. 1

EAE in Il27ra−/− mice is ameliorated by treatment with a neutralizing anti-IL-17A antibody. (PDF 42 kb)

Supplementary Fig. 2

Quantitative PCR analysis of IL23r expression. (PDF 55 kb)

Supplementary Fig. 3

Additive effect of IFN-γ and IL-27 in protection against EAE. (PDF 49 kb)

Supplementary Fig. 4

IL-27 induced IL-17 in STAT-1-deficient cells is independent of APC. (PDF 65 kb)

Supplementary Fig. 5

Natural regulatory T cell number is unchanged IL-27r−/− mice. (PDF 131 kb)

Supplementary Table 1

Primer sequences. (PDF 7 kb)

Supplementary Methods (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batten, M., Li, J., Yi, S. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells. Nat Immunol 7, 929–936 (2006). https://doi.org/10.1038/ni1375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1375

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing