Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells

Abstract

Regulation of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) is a highly versatile modulator of immunity. In inflammation, interferon-γ is the main inducer of IDO for the prevention of hyperinflammatory responses, yet IDO is also responsible for self-tolerance effects in the longer term. Here we show that treatment of mouse plasmacytoid DCs (pDCs) with transforming growth factor-β (TGF-β) conferred regulatory effects on IDO that were mechanistically separable from its enzymic activity. We found that IDO was involved in intracellular signaling events responsible for the self-amplification and maintenance of a stably regulatory phenotype in pDCs. Thus, IDO has a tonic, nonenzymic function that contributes to TGF-β-driven tolerance in noninflammatory contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IDO catalytic activity is not required for the IDO-dependent, immunoregulatory effects of pDCs conditioned with TGF-β in vitro.
Figure 2: The catalytic activity of IDO is not required for IDO-dependent, immunoregulatory effects induced in vivo by pDCs conditioned with TGF-β.
Figure 3: TGF-β induces the formation of IDO–SHP-1–SHP-2 complexes and activation of SHP-1 phosphatase activity in pDCs.
Figure 4: IDO phosphorylation requires PI(3)K-dependent but Smad-independent TGF-β signaling events and is mediated by Fyn but not Syk.
Figure 5: IDO and SHP proteins drive a signaling pathway in pDCs that involves activation of the noncanonical NF-κB pathway and production of type I interferon.
Figure 6: IDO-dependent immunoregulatory effects of pDCs conditioned with TGF-β are mediated by Fyn, SHP proteins, the noncanonical NF-κB pathway and type I interferon signaling.
Figure 7: TGF-β induces long-term expression of IDO in pDCs, but IFN-γ does not.
Figure 8: Long-term immunoregulatory effects in vivo of pDCs conditioned by TGF-β but not those conditioned by IFN-γ.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fazekas de St Groth, B. The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Immunol. Today 19, 448–454 (1998).

    Article  CAS  Google Scholar 

  2. Flajnik, M.F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    Article  CAS  Google Scholar 

  3. Grohmann, U. & Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev. 236, 243–264 (2010).

    Article  CAS  Google Scholar 

  4. Jeffery, C.J. Moonlighting proteins–an update. Mol. Biosyst. 5, 345–350 (2009).

    Article  CAS  Google Scholar 

  5. Forouhar, F. et al. Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA 104, 473–478 (2007).

    Article  CAS  Google Scholar 

  6. Ball, H.J., Yuasa, H.J., Austin, C.J., Weiser, S. & Hunt, N.H. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int. J. Biochem. Cell Biol. 41, 467–471 (2009).

    Article  CAS  Google Scholar 

  7. Metz, R. et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 67, 7082–7087 (2007).

    Article  CAS  Google Scholar 

  8. Mellor, A.L. & Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  Google Scholar 

  9. Puccetti, P. & Grohmann, U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation. Nat. Rev. Immunol. 7, 817–823 (2007).

    Article  CAS  Google Scholar 

  10. Grohmann, U., Fallarino, F. & Puccetti, P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 24, 242–248 (2003).

    Article  CAS  Google Scholar 

  11. Romani, L. et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451, 211–215 (2008).

    Article  CAS  Google Scholar 

  12. Belladonna, M.L. et al. Cutting edge: Autocrine TGF-β sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol. 181, 5194–5198 (2008).

    Article  CAS  Google Scholar 

  13. Belladonna, M.L., Orabona, C., Grohmann, U. & Puccetti, P. TGF-β and kynurenines as the key to infectious tolerance. Trends Mol. Med. 15, 41–49 (2009).

    Article  CAS  Google Scholar 

  14. Irla, M. et al. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J. Exp. Med. 207, 1891–1905 (2010).

    Article  CAS  Google Scholar 

  15. Matta, B.M., Castellaneta, A. & Thomson, A.W. Tolerogenic plasmacytoid DC. Eur. J. Immunol. 40, 2667–2676 (2010).

    Article  CAS  Google Scholar 

  16. Lande, R. & Gilliet, M. Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann. NY Acad. Sci. 1183, 89–103 (2010).

    Article  CAS  Google Scholar 

  17. Swiecki, M. & Colonna, M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev. 234, 142–162 (2010).

    Article  CAS  Google Scholar 

  18. Huang, L., Baban, B., Johnson, B.A. III & Mellor, A.L. Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. Int. Rev. Immunol. 29, 133–155 (2010).

    Article  CAS  Google Scholar 

  19. Orabona, C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat. Immunol. 5, 1134–1142 (2004).

    Article  CAS  Google Scholar 

  20. Grohmann, U. et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat. Med. 13, 579–586 (2007).

    Article  CAS  Google Scholar 

  21. Neel, B.G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003).

    Article  CAS  Google Scholar 

  22. Billadeau, D.D. & Leibson, P.J. ITAMs versus ITIMs: striking a balance during cell regulation. J. Clin. Invest. 109, 161–168 (2002).

    Article  CAS  Google Scholar 

  23. Ravetch, J.V. & Lanier, L.L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  CAS  Google Scholar 

  24. Sweeney, M.C. et al. Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains. Biochemistry 44, 14932–14947 (2005).

    Article  CAS  Google Scholar 

  25. Orr, S.J. et al. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 109, 1061–1068 (2007).

    Article  CAS  Google Scholar 

  26. Orr, S.J. et al. SOCS3 targets Siglec 7 for proteasomal degradation and blocks Siglec 7-mediated responses. J. Biol. Chem. 282, 3418–3422 (2007).

    Article  CAS  Google Scholar 

  27. Orabona, C. et al. SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc. Natl. Acad. Sci. USA 105, 20828–20833 (2008).

    Article  CAS  Google Scholar 

  28. Williams, J.C., Wierenga, R.K. & Saraste, M. Insights into Src kinase functions: structural comparisons. Trends Biochem. Sci. 23, 179–184 (1998).

    Article  CAS  Google Scholar 

  29. Daëron, M., Jaeger, S., Du Pasquier, L. & Vivier, E. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol. Rev. 224, 11–43 (2008).

    Article  Google Scholar 

  30. An, H. et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat. Immunol. 9, 542–550 (2008).

    Article  CAS  Google Scholar 

  31. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949–953 (2006).

    Article  CAS  Google Scholar 

  32. Tas, S.W. et al. Noncanonical NF-κB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood 110, 1540–1549 (2007).

    Article  CAS  Google Scholar 

  33. Orabona, C. et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107, 2846–2854 (2006).

    Article  CAS  Google Scholar 

  34. Puccetti, P. On watching the watchers: IDO and type I/II IFN. Eur. J. Immunol. 37, 876–879 (2007).

    Article  CAS  Google Scholar 

  35. Taylor, M.W. & Feng, G.S. Relationship between interferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 5, 2516–2522 (1991).

    Article  CAS  Google Scholar 

  36. Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    Article  CAS  Google Scholar 

  37. Grohmann, U. et al. CTLA-4–Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    Article  CAS  Google Scholar 

  38. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212 (2003).

    Article  CAS  Google Scholar 

  39. Fallarino, F. et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176, 6752–6761 (2006).

    Article  CAS  Google Scholar 

  40. Mezrich, J.D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    Article  CAS  Google Scholar 

  41. Abu-Dayyeh, I. et al. Identification of key cytosolic kinases containing evolutionarily conserved kinase tyrosine-based inhibitory motifs (KTIMs). Dev. Comp. Immunol. 34, 481–484 (2010).

    Article  CAS  Google Scholar 

  42. Grohmann, U. et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J. Exp. Med. 198, 153–160 (2003).

    Article  CAS  Google Scholar 

  43. Fallarino, F. et al. IDO mediates TLR9-driven protection from experimental autoimmune diabetes. J. Immunol. 183, 6303–6312 (2009).

    Article  CAS  Google Scholar 

  44. Fallarino, F. et al. Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat. Med. 16, 897–902 (2010).

    Article  CAS  Google Scholar 

  45. Orabona, C. et al. Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28-Ig from immune adjuvant to suppressant. J. Immunol. 174, 6582–6586 (2005).

    Article  CAS  Google Scholar 

  46. Belladonna, M.L. et al. IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine 34, 161–169 (2006).

    Article  CAS  Google Scholar 

  47. Belladonna, M.L. et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J. Immunol. 168, 5448–5454 (2002).

    Article  CAS  Google Scholar 

  48. Bisognin, A. et al. A-MADMAN: annotation-based microarray data meta-analysis tool. BMC Bioinformatics 10, 201–211 (2009).

    Article  Google Scholar 

  49. Muller, A.J., DuHadaway, J.B., Donover, P.S., Sutanto-Ward, E. & Prendergast, G.C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312–319 (2005).

    Article  CAS  Google Scholar 

  50. Grohmann, U. et al. Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation. J. Immunol. 171, 2581–2587 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.C. Prendergast (Lankenau Institute for Medical Research) for the mIDOprom900-luc plasmid, and G. Andrielli for digital art and image editing. Supported by the Italian Ministry of Health (GR-2008-1138004 ('Innovative IDO-targeting interventions in autoimmunity') to C.O.), the Associazione per l'Aiuto ai Giovani con Diabete dell'Umbria (U.G.) and Associazione Italiana per la Ricerca sul Cancro (P.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.T.P. designed and did experiments; C.O., C.Vo. C.Va., M.L.B., R.B., C.B., M.C. and E.M.C.M. did experiments; G.S., S.B. and M.C.F. contributed to experimental design; L.B. and F.G. provided reagents; F.F. designed experiments and supervised research; P.P. supervised research; and U.G. designed experiments, supervised research and wrote the manuscript.

Corresponding author

Correspondence to Ursula Grohmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallotta, M., Orabona, C., Volpi, C. et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 12, 870–878 (2011). https://doi.org/10.1038/ni.2077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing