Abstract
Programmed death 1 (PD-1) is an inhibitory molecule expressed on activated T cells; however, the biological context in which PD-1 controls T cell tolerance remains unclear. Using two-photon laser-scanning microscopy, we show here that unlike naive or activated islet antigen–specific T cells, tolerized islet antigen–specific T cells moved freely and did not swarm around antigen-bearing dendritic cells (DCs) in pancreatic lymph nodes. Inhibition of T cell antigen receptor (TCR)-driven stop signals depended on continued interactions between PD-1 and its ligand, PD-L1, as antibody blockade of PD-1 or PD-L1 resulted in lower T cell motility, enhanced T cell–DC contacts and caused autoimmune diabetes. Blockade of the immunomodulatory receptor CTLA-4 did not alter T cell motility or abrogate tolerance. Thus, PD-1–PD-L1 interactions maintain peripheral tolerance by mechanisms fundamentally distinct from those of CTLA-4.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).
Luhder, F., Chambers, C., Allison, J.P., Benoist, C. & Mathis, D. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc. Natl. Acad. Sci. USA 97, 12204–12209 (2000).
Chikuma, S., Imboden, J.B. & Bluestone, J.A. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 197, 129–135 (2003).
Keir, M.E., Butte, M.J., Freeman, G.J. & Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).
Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).
Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998).
Yamazaki, T. et al. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169, 5538–5545 (2002).
Ishida, M. et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol. Lett. 84, 57–62 (2002).
Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).
Fife, B.T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).
Keir, M.E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).
Ansari, M.J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).
Butte, M.J., Keir, M.E., Phamduy, T.B., Sharpe, A.H. & Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007).
Chikuma, S. & Bluestone, J.A. CTLA-4 and tolerance: the biochemical point of view. Immunol. Res. 28, 241–253 (2003).
Parry, R.V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).
Schneider, H. & Rudd, C.E. Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem. Biophys. Res. Commun. 269, 279–283 (2000).
Fife, B.T. & Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 224, 166–182 (2008).
Germain, R.N., Miller, M.J., Dustin, M.L. & Nussenzweig, M.C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat. Rev. Immunol. 6, 497–507 (2006).
Bousso, P. & Robey, E.A. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21, 349–355 (2004).
Hugues, S. et al. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat. Immunol. 5, 1235–1242 (2004).
Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).
Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).
Shakhar, G. et al. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat. Immunol. 6, 707–714 (2005).
Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).
Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).
Dustin, M.L., Bromley, S.K., Kan, Z., Peterson, D.A. & Unanue, E.R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 3909–3913 (1997).
Hurez, V. et al. Restricted clonal expression of IL-2 by naive T cells reflects differential dynamic interactions with dendritic cells. J. Exp. Med. 198, 123–132 (2003).
Benvenuti, F. et al. Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. J. Immunol. 172, 292–301 (2004).
Scholer, A., Hugues, S., Boissonnas, A., Fetler, L. & Amigorena, S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28, 258–270 (2008).
Judkowski, V. et al. Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice. J. Immunol. 166, 908–917 (2001).
Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).
Lindquist, R.L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).
Sumen, C., Mempel, T.R., Mazo, I.B. & von Andrian, U.H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).
Cahalan, M.D., Parker, I., Wei, S.H. & Miller, M.J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2, 872–880 (2002).
Nishimura, H. et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4−CD8−) thymocytes. Int. Immunol. 8, 773–780 (1996).
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).
Li, W., Whaley, C.D., Mondino, A. & Mueller, D.L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).
Morton, A.M., McManus, B., Garside, P., Mowat, A.M. & Harnett, M.M. Inverse Rap1 and phospho-ERK expression discriminate the maintenance phase of tolerance and priming of antigen-specific CD4+ T cells in vitro and in vivo. J. Immunol. 179, 8026–8034 (2007).
Breart, B. & Bousso, P. Cellular orchestration of T cell priming in lymph nodes. Curr. Opin. Immunol. 18, 483–490 (2006).
Miller, M.J., Safrina, O., Parker, I. & Cahalan, M.D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).
Celli, S., Lemaitre, F. & Bousso, P. Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27, 625–634 (2007).
Zambricki, E. et al. In vivo anergized T cells form altered immunological synapses in vitro. Am. J. Transplant. 6, 2572–2579 (2006).
Chemnitz, J.M., Parry, R.V., Nichols, K.E., June, C.H. & Riley, J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).
Schneider, H. et al. Reversal of the TCR stop signal by CTLA-4. Science 313, 1972–1975 (2006).
Downey, J., Smith, A., Schneider, H., Hogg, N. & Rudd, C.E. TCR/CD3 mediated stop-signal is decoupled in T-cells from Ctla4 deficient mice. Immunol. Lett. 115, 70–72 (2008).
Hara, M. et al. Transgenic mice with green fluorescent protein-labeled pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 284, E177–E183 (2003).
Katz, J.D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).
Hale, M.B. & Nolan, G.P. Phospho-specific flow cytometry: intersection of immunology and biochemistry at the single-cell level. Curr. Opin. Mol. Ther. 8, 215–224 (2006).
Lenschow, D.J. et al. Inhibition of transplant rejection following treatment with anti-B7–2 and anti-B7–1 antibodies. Transplantation 60, 1171–1178 (1995).
Szot, G.L., Koudria, P. & Bluestone, J.A. Transplantation of pancreatic islets into the kidney capsule of diabetic mice. J. Vis. Exp. 9, 404 (2007).
Acknowledgements
We thank M. Hara and G. Bell (University of Chicago) for C57BL/6 MIP.eGFP mice; M. Nussenzweig (Rockefeller University) for C57BL/6 CD11c-YFP mice; A. Sharpe (Harvard Medical School) for C57BL/6 PD-L1-deficient mice; C. Benoist and D. Mathis (Harvard Medical School) for NOD BDC2.5 TCR–transgenic mice; R. Locksley (University of California, San Francisco) for Yeti (IFN-γ reporter) mice; N. Martenier for animal care; C. Allen, E. Finger, E. Peterson, R. Freidman, K. Hogquist, C. Penaranda and X. Zhou for scientific discussions; G. Szot and P. Koudria for islet transplantation; C. McArthur for cell sorting; and A. Bullen and M. Jenkins for multiphoton imaging support. Supported by LifeScan, the US National Institutes of Health (AI35297 to J.A.B., and P30 DK63720 for core support), the Juvenile Diabetes Research Foundation (10-2006-799 to B.T.F.), the American Diabetes Association (7-09-JF-21 to B.T.F.) and the University of Minnesota Medical School (B.T.F.).
Author information
Authors and Affiliations
Contributions
B.T.F. and J.A.B. designed and conceptualized the research project; B.T.F., K.E.P, T.O. and J.W. did the experiments; B.T.F., T.N.E., Q.T. and M.F.K. analyzed the data; B.T.F prepared the figures; B.T.F. and J.A.B. interpreted the data and wrote the manuscript; and M.A. provided anti-PD-L1 hybridoma.
Corresponding author
Supplementary information
Supplementary Movie 1
Activated antigen specific T cells stop in antigen-draining PLN. A time-lapse sequence of 50 μm z-projection images shows the dynamics of in vitro activated BDC2.5 CD4+ T cells (labeled red using CMTMR) in a PLN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient mouse. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 15 min in real-time, which is compressed to 3 sec in this video. (MOV 1549 kb)
Supplementary Movie 2
Dynamic movement of tolerized T cells in islet antigen-draining PLN. A time-lapse sequence of 40 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a pancreatic LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient and isotype antibody injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 15 min in real-time, which is compressed to 3 sec in this video. (MOV 2206 kb)
Supplementary Movie 3
PD-L1 blockade causes tolerized T cells to stop in islet antigen-draining PLN. A time-lapse sequence of 36 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a pancreatic LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient and anti-PD-L1 antibody injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 15 min in real-time, which is compressed to 3 sec in this video. (MOV 2119 kb)
Supplementary Movie 4
CTLA-4 blockade does not alter tolerized T cell movement in islet antigen-draining PLN. A time-lapse sequence of 44 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a pancreatic LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient and anti-CTLA-4 antibody injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 15 min in real-time, which is compressed to 3 sec in this video. (MOV 1796 kb)
Supplementary Movie 5
Dynamic movement of activated antigen specific T cells in islet antigen-deficient ILN. A time-lapse sequence of 42 μm z-projection images shows the dynamics of in vitro activated BDC2.5 CD4+ T cells (labeled red using CMTMR) in a inguinal LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 1371 kb)
Supplementary Movie 6
Tolerized T cells move freely in islet antigen-deficient ILN. A time-lapse sequence of 44 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a inguinal LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient and isotype control antibody injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 1246 kb)
Supplementary Movie 7
PD-L1 blockade does not alter tolerized T cell movement in islet antigen-deficient ILN. A time-lapse sequence of 46 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a inguinal LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient and anti-PD-L1 injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 1143 kb)
Supplementary Movie 8
CTLA-4 blockade does not alter tolerized T cell movement in islet antigen-deficient ILN. A time-lapse sequence of 40 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a inguinal LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient and anti-CTLA-4 injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 3116 kb)
Supplementary Movie 9
PD-L1 blockade causes tolerized T cells, but not naïve polyclonal T cells to stop in islet antigen-draining PLN. A time-lapse sequence of 28 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a pancreatic LN explant 18h after transfer to a NOD.CD4-eGFP (green naïve T cells) recipient and anti-PD-L1 antibody injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 1588 kb)
Supplementary Movie 10
Dynamic movement of tolerized T cells in pancreatic islet tissue. A time-lapse sequence of 46 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in pancreatic islet grafts of NOD.SCID transplant recipients receiving NOD.MIP-GFP islets (green β-cells) and isotype control antibody injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 2122 kb)
Supplementary Movie 11
PD-L1 blockade causes tolerized T cells to stop in pancreatic islet tissue. A time-lapse sequence of 42 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in pancreatic islet grafts of NOD.SCID transplant recipients receiving NOD.MIP-GFP islets (green β-cells) and anti-PD-L1 injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 3370 kb)
Supplementary Movie 12
CTLA-4 blockade does not alter tolerized T cell movement in pancreatic islet tissue. A time-lapse sequence of 44 μm z-projection images shows the dynamics of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in pancreatic islet grafts of NOD.SCID transplant recipients receiving NOD.MIP-GFP islets (green β-cells) and anti-CTLA-4 injection. Elapsed time is shown as hh:mm:ss:sss. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 1808 kb)
Supplementary Movie 13
Investigation of T cell-DC conjugates in pancreatic LN. A time-lapse sequence of 34 μm 3D projection shows the dynamic movement of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) in a pancreatic LN explant 18h after transfer to a NOD.CD11c-eYFP (yellow and green DC) recipient and isotype control antibody injection. Elapsed time is shown as hh:mm:ss:sss. Randomly selected cells were tracked and the trailing line following the cells represents the cell path over time. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 1276 kb)
Supplementary Movie 14
PD-L1 blockade induces stable T cell-DC conjugates in pancreatic LN. A time-lapse sequence of 36 μm 3D projection shows the stable interactions of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) with DC (yellow and green) in a pancreatic LN explant 18h after transfer to a NOD.CD11c-eYFP recipient and anti-PD-L1 injection. Elapsed time is shown as hh:mm:ss:sss. Randomly selected cells were tracked and the trailing line following the cells represents the cell path over time. The duration of the imaging is 10 min in real-time, which is compressed to 2 sec in this video. (MOV 1690 kb)
Supplementary Movie 15
Dynamic T cell-DC interactions following T cell tolerance. A magnified time-lapse sequence illustrating the dynamic and short interactions of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) with DC (yellow and green) in a pancreatic LN explant 18h after transfer to a NOD.CD11c-eYFP recipient and isotype antibody injection. Elapsed time is shown as hh:mm:ss:sss. Brief conjugates can be seen with co localization of the cells in yellow. The duration of the imaging is 30 min in real-time, which is compressed to 6 sec in this video. (MOV 2493 kb)
Supplementary Movie 16
PD-L1 blockade induces stable T cell-DC conjugates and breaks tolerance. A magnified time-lapse sequence illustrating stable and long lasting interactions of in vivo tolerized BDC2.5 CD4+ T cells (labeled red using CMTMR) with DC (yellow and green) in a pancreatic LN explant 18h after transfer to a NOD.CD11c-eYFP recipient and anti-PD-L1 injection. Elapsed time is shown as hh:mm:ss:sss. Stable conjugates can be seen with co localization of the cells in yellow. The duration of the imaging is 30 min in real-time, which is compressed to 6 sec in this video. (MOV 2725 kb)
Rights and permissions
About this article
Cite this article
Fife, B., Pauken, K., Eagar, T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nat Immunol 10, 1185–1192 (2009). https://doi.org/10.1038/ni.1790
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ni.1790
This article is cited by
-
Clinical immunotherapy in pancreatic cancer
Cancer Immunology, Immunotherapy (2024)
-
Cysteine depletion sensitizes prostate cancer cells to agents that enhance DNA damage and to immune checkpoint inhibition
Journal of Experimental & Clinical Cancer Research (2023)
-
PD-1 receptor outside the main paradigm: tumour-intrinsic role and clinical implications for checkpoint blockade
British Journal of Cancer (2023)
-
Computational design of PD-L1 small molecule inhibitors for cancer therapy
Molecular Diversity (2023)
-
Expression analysis of inhibitory B7 family members in Alzheimer’s disease
Metabolic Brain Disease (2023)