Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Germline KRAS mutations cause Noonan syndrome

A Corrigendum to this article was published on 01 May 2006

Abstract

Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects1. Heterozygous mutations in PTPN11, which encodes SHP-2, cause 50% of cases of Noonan syndrome1,2. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras3. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome1,4. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage–specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical phenotypes and KRAS mutations in individuals with Noonan syndrome and CFC syndrome.
Figure 2: Intrinsic GTP hydrolysis of wild-type and mutant K-Ras proteins and responses to GAPs.
Figure 3: Functional and biochemical characteristics of V14I and T58I K-Ras proteins.

Similar content being viewed by others

References

  1. Tartaglia, M. & Gelb, B.D. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6, 45–68 (2005).

    Article  CAS  Google Scholar 

  2. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001).

    Article  CAS  Google Scholar 

  3. Neel, B.G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003).

    Article  CAS  Google Scholar 

  4. Kavamura, M.I., Peres, C.A., Alchorne, M.M. & Brunoni, D. CFC index for the diagnosis of cardiofaciocutaneous syndrome. Am. J. Med. Genet. 112, 12–16 (2002).

    Article  CAS  Google Scholar 

  5. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  Google Scholar 

  6. Donovan, S., Shannon, K.M. & Bollag, G. GTPase activating proteins: critical regulators of intracellular signaling. Biochim. Biophys. Acta 1602, 23–45 (2002).

    CAS  PubMed  Google Scholar 

  7. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  8. Lauchle, J.O., Braun, B.S., Loh, M.L. & Shannon, K. Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr. Blood Cancer (2005).

  9. Bollag, G. et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in murine and human hematopoietic cells. Nat. Genet. 12, 144–148 (1996).

    Article  CAS  Google Scholar 

  10. Side, L. et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N. Engl. J. Med. 336, 1713–1720 (1997).

    Article  CAS  Google Scholar 

  11. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    Article  CAS  Google Scholar 

  12. Kratz, C.P. et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 106, 2183–2185 (2005).

    Article  CAS  Google Scholar 

  13. Keilhack, H., David, F.S., McGregor, M., Cantley, L.C. & Neel, B.G. Diverse biochemical properties of Shp2 mutants: Implications for disease phenotypes. J. Biol. Chem. 280, 30984–30993 (2005).

    Article  CAS  Google Scholar 

  14. Mohi, M.G. et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7, 179–191 (2005).

    Article  CAS  Google Scholar 

  15. Chan, R.J. et al. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood 105, 3737–3742 (2005).

    Article  CAS  Google Scholar 

  16. Schubbert, S. et al. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 106, 311–317 (2005).

    Article  CAS  Google Scholar 

  17. Bollag, G. et al. Biochemical characterization of a novel KRAS insertional mutation from a human leukemia. J. Biol. Chem. 273, 32491–32494 (1996).

    Article  Google Scholar 

  18. Bollag, G. & McCormick, F. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351, 576–579 (1991).

    Article  CAS  Google Scholar 

  19. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  20. Aoki, Y. et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 37, 1038–1040 (2005).

    Article  CAS  Google Scholar 

  21. Tuveson, D.A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  Google Scholar 

  22. Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11, 2468–2481 (1997).

    Article  CAS  Google Scholar 

  23. Marshall, C. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  24. Franken, S.M. et al. Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras. Biochemistry 32, 8411–8420 (1993).

    Article  CAS  Google Scholar 

  25. Largaespada, D.A., Brannan, C.I., Jenkins, N.A. & Copeland, N.G. Nf1 deficiency causes Ras-mediated granulocyte-macrophage colony stimulating factor hypersensitivity and chronic myeloid leukemia. Nat. Genet. 12, 137–143 (1996).

    Article  CAS  Google Scholar 

  26. Hiatt, K.K., Ingram, D.A., Zhang, Y., Bollag, G. & Clapp, D.W. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1−/− cells. J. Biol. Chem. 276, 7240–7245 (2001).

    Article  CAS  Google Scholar 

  27. Stone, J.C., Colleton, M. & Bottorff, D. Effector domain mutations dissociate p21ras effector function and GTPase-activating protein interaction. Mol. Cell. Biol. 13, 7311–7320 (1993).

    Article  CAS  Google Scholar 

  28. Araki, T. et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat. Med. 10, 849–857 (2004).

    Article  CAS  Google Scholar 

  29. Zenker, M. et al. Genotype-phenotype correlations in Noonan syndrome. J. Pediatr. 144, 368–374 (2004).

    Article  CAS  Google Scholar 

  30. Donovan, S., See, W., Bonifas, J., Stokoe, D. & Shannon, K.M. Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2, 507–514 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to A. Struwe, Karolinen-Hospital Hüsten, G. Gillessen-Kaesbach and D. Wieczorek, Institute of Human Genetics Essen; P. Meinecke, Altona Children's Hospital, Hamburg and A. Tzschach, Max Planck Institute of Molecular Genetics, Berlin for providing DNA and clinical information for individuals included in this study. We also thank A. Diem for excellent technical assistance and R. Hawley for providing the MSCV vector. We acknowledge S. McQuiston and S. Elmes of the Laboratory for Cell Analysis Shared resource of the UCSF Comprehensive Cancer Center for assistance with cell sorting. This work was supported, in part, by US National Institutes of Health grants R01 CA72614 and R01 CA104282 and by the Deutsche José Carreras Leukämie-Stiftung e.V (DJCLS R02/10 JMML/MDS). We are grateful to R. Chan, F. McCormick, D. Tuveson and R. Van Etten for technical advice and critical comments. We apologize to investigators whose work we did not cite due to the limited number of references permitted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin Shannon or Christian P Kratz.

Ethics declarations

Competing interests

H.N., B.W., G.B. and K.Y.J.Z.are employees of Plexxikon.

Supplementary information

Supplementary Fig. 1

Sequence alignments of two regions of human K-Ras isoforms with their orthologs in different species. (PDF 99 kb)

Supplementary Fig. 2

Locations of Val14 and Thr58 in the Ras/p120 GAP co-crystal structure. (PDF 1310 kb)

Supplementary Note (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubbert, S., Zenker, M., Rowe, S. et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet 38, 331–336 (2006). https://doi.org/10.1038/ng1748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing