Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping

Abstract

Despite developments in targeted gene sequencing and whole-genome analysis techniques, the robust detection of all genetic variation, including structural variants, in and around genes of interest and in an allele-specific manner remains a challenge. Here we present targeted locus amplification (TLA), a strategy to selectively amplify and sequence entire genes on the basis of the crosslinking of physically proximal sequences. We show that, unlike other targeted re-sequencing methods, TLA works without detailed prior locus information, as one or a few primer pairs are sufficient for sequencing tens to hundreds of kilobases of surrounding DNA. This enables robust detection of single nucleotide variants, structural variants and gene fusions in clinically relevant genes, including BRCA1 and BRCA2, and enables haplotyping. We show that TLA can also be used to uncover insertion sites and sequences of integrated transgenes and viruses. TLA therefore promises to be a useful method in genetic research and diagnostics when comprehensive or allele-specific genetic information is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted sequencing using TLA.
Figure 2: TLA analysis of the BRCA1 gene.
Figure 3: Haplotyping selected chromosomal regions.
Figure 4: TLA applied to transgenes and chromosomal rearrangements.
Figure 5: Detection of structural variants in clinically relevant genes.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Katsanis, S.H. & Katsanis, N. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 14, 415–426 (2013).

    Article  CAS  Google Scholar 

  2. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  Google Scholar 

  3. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J.O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).

    Article  CAS  Google Scholar 

  4. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  Google Scholar 

  5. Harakalova, M. et al. Multiplexed array-based and in-solution genomic enrichment for flexible and cost-effective targeted next-generation sequencing. Nat. Protoc. 6, 1870–1886 (2011).

    Article  CAS  Google Scholar 

  6. Frank, T.S. et al. Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J. Clin. Oncol. 16, 2417–2425 (1998).

    Article  CAS  Google Scholar 

  7. Altmüller, J., Budde, B.S. & Nurnberg, P. Enrichment of target sequences for next generation sequencing applications in research and diagnostics. Biol. Chem. 395, 231–237 (2014).

    Article  Google Scholar 

  8. Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).

    Article  CAS  Google Scholar 

  9. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  10. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  11. van de Werken, H.J. et al. 4C technology: protocols and data analysis. Methods Enzymol. 513, 89–112 (2012).

    Article  CAS  Google Scholar 

  12. Rippe, K. Making contacts on a nucleic acid polymer. Trends Biochem. Sci. 26, 733–740 (2001).

    Article  CAS  Google Scholar 

  13. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  14. Simonis, M. et al. High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat. Methods 6, 837–842 (2009).

    Article  CAS  Google Scholar 

  15. Homminga, I. et al. Integrated transcript and genome analyses reveal NKX2–1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19, 484–497 (2011).

    Article  CAS  Google Scholar 

  16. Burton, J.N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    Article  CAS  Google Scholar 

  17. Kaplan, N. & Dekker, J. High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat. Biotechnol. 31, 1143–1147 (2013).

    Article  CAS  Google Scholar 

  18. Fong, P.C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  Google Scholar 

  19. Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  Google Scholar 

  20. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  Google Scholar 

  21. Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).

    Article  Google Scholar 

  22. Selvaraj, S., Dixon, J.R., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31, 1111–1118 (2013).

    Article  CAS  Google Scholar 

  23. van den Maagdenberg, A.M. et al. Transgenic mice carrying the apolipoprotein E3-Leiden gene exhibit hyperlipoproteinemia. J. Biol. Chem. 268, 10540–10545 (1993).

    CAS  PubMed  Google Scholar 

  24. Uren, A.G. et al. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat. Protoc. 4, 789–798 (2009).

    Article  CAS  Google Scholar 

  25. Koudijs, M.J. et al. High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors. Genome Res. 21, 2181–2189 (2011).

    Article  CAS  Google Scholar 

  26. Smith, S.D. et al. Clinical and biologic characterization of T-cell neoplasias with rearrangements of chromosome 7 band q34. Blood 71, 395–402 (1988).

    CAS  PubMed  Google Scholar 

  27. Lightfield, K.L. et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol. 9, 1171–1178 (2008).

    Article  CAS  Google Scholar 

  28. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  Google Scholar 

  29. Meyer, C. et al. The MLL recombinome of acute leukemias in 2013. Leukemia 27, 2165–2176 (2013).

    Article  CAS  Google Scholar 

  30. Leary, R.J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    Article  Google Scholar 

  31. Evers, B. et al. A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clinical cancer research: an official journal of the American Association for Cancer Research 16, 99–108 (2010).

    Article  CAS  Google Scholar 

  32. McKeithan, T.W. et al. Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor α-chain gene and sequences on the 3′ side of MYC. Proc. Natl. Acad. Sci. USA 83, 6636–6640 (1986).

    Article  CAS  Google Scholar 

  33. Lange, B. et al. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 70, 192–199 (1987).

    CAS  Google Scholar 

  34. de Vree, P.J. et al. Application of molecular cytogenetic techniques to clarify apparently balanced complex chromosomal rearrangements in two patients with an abnormal phenotype: case report. Mol. Cytogenet. 2, 15 (2009).

    Article  Google Scholar 

  35. Nagel, J.H. et al. Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes. Breast Cancer Res. Treat. 132, 439–448 (2012).

    Article  CAS  Google Scholar 

  36. Anonymous. Revision of the standards for the assessment of hormone receptors in human breast cancer; report of the second E.O.R.T.C. Workshop, held on 16–17 March, 1979, in the Netherlands Cancer Institute. Eur. J. Cancer 16, 1513–1515 (1980).

  37. Splinter, E., de Wit, E., van de Werken, H.J., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation. Methods 58, 221–230 (2012).

    Article  CAS  Google Scholar 

  38. Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article  CAS  Google Scholar 

  39. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T.P. Driessen for figure graphics. This work was supported by the Netherlands Genomics Initiative (NGI) pre-seed grants 93608003 and 93611010 and a proof of concept grant from the Cancer Genomics Center (CGC) to W.d.L. and an Innovation Credit from NL Agency to Cergentis. P.J.P.d.V. is supported by a Dutch Cancer Foundation grant KWF (2009-4459 to J.A.F., J.W.M. and W.d.L.).

Author information

Authors and Affiliations

Authors

Contributions

P.J.P.d.V., E.d.W., M.v.M., E.S. and W.d.L. conceived the experiments and analyzed the data; P.J.P.d.V., M.Y., M.v.d.H., P.K., M.J.A.M.V., Y.W., H.T., P.H.L.K., G.G. and E.S. performed the experiments and analyzed the data; M.v.M. and W.d.L. invented TLA. All other authors provided patient samples and analyzed data. E.S., E.d.W. and W.d.L. wrote the manuscript with input from P.J.P.d.V., P.H.L.K., G.G., D.S., B.Y., J.J., L.J.C.M.v.Z., M.L., M.C., B.S.-R., K.W.v.D., M.J.L.L., H.K.P.v.A., J.T.d.D., J.W.M. and M.v.M.

Corresponding authors

Correspondence to Erik Splinter or Wouter de Laat.

Ethics declarations

Competing interests

P.J.P.d.V., M.J.A.M.V., P.H.L.K. and G.G. are shareholders of Cergentis. E.d.W. is co-founder and shareholder of Cergentis and works part time for Cergentis. W.d.L. is co-founder and shareholder of Cergentis. Based on a consultancy agreement between the Hubrecht Institute and Cergentis, W.d.L. works one day per week for Cergentis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Tables 1 and 2, and Supplementary Protocol (PDF 10960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vree, P., de Wit, E., Yilmaz, M. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol 32, 1019–1025 (2014). https://doi.org/10.1038/nbt.2959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2959

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing