Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel

Abstract

The Ca2+-activated K+ channel, Slo1, has an unusually large conductance and contains a voltage sensor and multiple chemical sensors. Dual activation by membrane voltage and Ca2+ renders Slo1 central to processes that couple electrical signalling to Ca2+-mediated events such as muscle contraction and neuronal excitability. Here we present the cryo-electron microscopy structure of a full-length Slo1 channel from Aplysia californica in the presence of Ca2+ and Mg2+ at a resolution of 3.5 Å. The channel adopts an open conformation. Its voltage-sensor domain adopts a non-domain-swapped attachment to the pore and contacts the cytoplasmic Ca2+-binding domain from a neighbouring subunit. Unique structural features of the Slo1 voltage sensor suggest that it undergoes different conformational changes than other known voltage sensors. The structure reveals the molecular details of three distinct divalent cation-binding sites identified through electrophysiological studies of mutant Slo1 channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual activation of Aplysia Slo1 by voltage and intracellular Ca2+ in planar lipid bilayers.
Figure 2: Structure of open Slo1.
Figure 3: The ion conduction pathway in Aplysia Slo1.
Figure 4: Unique features of the Slo1 VSD.
Figure 5: Three divalent cation-binding sites in Aplysia Slo1.
Figure 6: Comparison of the ion conduction pore in three different K+ channels.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Pallotta, B. S., Magleby, K. L. & Barrett, J. N. Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293, 471–474 (1981)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Marty, A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 291, 497–500 (1981)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Latorre, R., Vergara, C. & Hidalgo, C. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc. Natl Acad. Sci. USA 79, 805–809 (1982)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barrett, J. N., Magleby, K. L. & Pallotta, B. S. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (Lond.) 331, 211–230 (1982)

    Article  CAS  Google Scholar 

  5. Contreras, G. F. et al. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin) 7, 442–458 (2013)

    Article  CAS  Google Scholar 

  6. Jiang, Y., Pico, A., Cadene, M., Chait, B. T. & MacKinnon, R. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29, 593–601 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wu, Y., Yang, Y., Ye, S. & Jiang, Y. Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature 466, 393–397 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan, P., Leonetti, M. D., Pico, A. R., Hsiung, Y. & MacKinnon, R. Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329, 182–186 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuan, P., Leonetti, M. D., Hsiung, Y. & MacKinnon, R. Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481, 94–97 (2011)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schreiber, M. & Salkoff, L. A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355–1363 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xia, X. M., Zeng, X. & Lingle, C. J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhang, G. et al. Ion sensing in the RCK1 domain of BK channels. Proc. Natl Acad. Sci. USA 107, 18700–18705 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bao, L., Rapin, A. M., Holmstrand, E. C. & Cox, D. H. Elimination of the BKCa channel’s high-affinity Ca2+ sensitivity. J. Gen. Physiol. 120, 173–189 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bao, L., Kaldany, C., Holmstrand, E. C. & Cox, D. H. Mapping the BKCa channel’s “Ca2+ bowl”: side-chains essential for Ca2+ sensing. J. Gen. Physiol. 123, 475–489 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Golowasch, J., Kirkwood, A. & Miller, C. Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle. J. Exp. Biol. 124, 5–13 (1986)

    Article  CAS  PubMed  Google Scholar 

  18. Oberhauser, A., Alvarez, O. & Latorre, R. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane. J. Gen. Physiol. 92, 67–86 (1988)

    Article  CAS  PubMed  Google Scholar 

  19. Shi, J. et al. Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418, 876–880 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Yang, H. et al. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains. Nat. Struct. Mol. Biol. 15, 1152–1159 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grissmer, S. et al. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol. 45, 1227–1234 (1994)

    CAS  PubMed  Google Scholar 

  22. Zhang, Y. et al. The appearance of a protein kinase A-regulated splice isoform of slo is associated with the maturation of neurons that control reproductive behavior. J. Biol. Chem. 279, 52324–52330 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Horrigan, F. T. & Aldrich, R. W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120, 267–305 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stefani, E. et al. Voltage-controlled gating in a large conductance Ca2+-sensitive K+channel (hslo). Proc. Natl Acad. Sci. USA 94, 5427–5431 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horrigan, F. T. & Aldrich, R. W. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca2+ . J. Gen. Physiol. 114, 305–336 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horrigan, F. T., Cui, J. & Aldrich, R. W. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca2+ . J. Gen. Physiol. 114, 277–304 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sigworth, F. J. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (Lond.) 307, 97–129 (1980)

    Article  CAS  Google Scholar 

  28. Long, S. B., Campbell, E. B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Tao, X., Lee, A., Limapichat, W., Dougherty, D. A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jensen, M. O. et al. Mechanism of voltage gating in potassium channels. Science 336, 229–233 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Liu, G. et al. Location of modulatory beta subunits in BK potassium channels. J. Gen. Physiol. 135, 449–459 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Nishida, M. & MacKinnon, R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111, 957–965 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. Hite, R. K. et al. Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature 527, 198–203 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brelidze, T. I., Niu, X. & Magleby, K. L. A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc. Natl Acad. Sci. USA 100, 9017–9022 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nimigean, C. M., Chappie, J. S. & Miller, C. Electrostatic tuning of ion conductance in potassium channels. Biochemistry 42, 9263–9268 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Budelli, G., Geng, Y., Butler, A., Magleby, K. L. & Salkoff, L. Properties of Slo1 K+ channels with and without the gating ring. Proc. Natl Acad. Sci. USA 110, 16657–16662 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, W. & Aldrich, R. W. Unique inner pore properties of BK channels revealed by quaternary ammonium block. J. Gen. Physiol. 124, 43–57 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Armstrong, C. M. & Bezanilla, F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63, 533–552 (1974)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    Article  CAS  PubMed  Google Scholar 

  43. Hite, R. K., Tao, X. & MacKinnon, R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature http://dx.doi.org/10.1038/nature20775 (2016)

  44. Shi, J. & Cui, J. Intracellular Mg2+ enhances the function of BK-type Ca2+-activated K+ channels. J. Gen. Physiol . 118, 589–606 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Katz, A. M., Glusker, J. P., Beebe, S. A. & Bock, C. W. Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J. Am. Chem. Soc. 1, 5752–5763 (1996)

    Article  Google Scholar 

  46. Bock, C. W., Kaufman, A. & Glusker, J. P. Coordination of water to magnesium cations. Inorg. Chem. 33, 419–427 (1994)

    Article  CAS  Google Scholar 

  47. Qian, X., Niu, X. & Magleby, K. L. Intra- and intersubunit cooperativity in activation of BK channels by Ca2+. J. Gen. Physiol. 128, 389–404 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sweet, T. B. & Cox, D. H. Measurements of the BKCa channel’s high-affinity Ca2+ binding constants: effects of membrane voltage. J. Gen. Physiol. 132, 491–505 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, X. et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486, 130–134 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Payandeh, J., Gamal El-Din, T. M., Scheuer, T., Zheng, N. & Catterall, W. A. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486, 135–139 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo, J. et al. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana . Nature 531, 196–201 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Ho, B. K. G. F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wong, J. P., Reboul, E., Molday, R. S. & Kast, J. A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins. J. Proteome Res. 8, 2388–2396 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rothbauer, U. et al. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteomics 7, 282–289 (2008)

    Article  CAS  PubMed  Google Scholar 

  55. Fridy, P. C. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11, 1253–1260 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, W., Whorton, M. R. & MacKinnon, R. Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system. eLife 3, e03671 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Almers, W. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol . 82, 96–190 (1978)

    Article  CAS  PubMed  Google Scholar 

  58. Almers, W. & Armstrong, C. M. Survival of K+ permeability and gating currents in squid axons perfused with K+-free media. J. Gen. Physiol. 75, 61–78 (1980)

    Article  CAS  PubMed  Google Scholar 

  59. Bezanilla, F. & Stefani, E. Voltage-dependent gating of ionic channels. Annu. Rev. Biophys. Biomol. Struct. 23, 819–846 (1994)

    Article  CAS  PubMed  Google Scholar 

  60. Hirschberg, B., Rovner, A., Lieberman, M. & Patlak, J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J. Gen. Physiol. 106, 1053–1068 (1995)

    Article  CAS  PubMed  Google Scholar 

  61. Noceti, F. et al. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. J. Gen. Physiol. 108, 143–155 (1996)

    Article  CAS  PubMed  Google Scholar 

  62. Sigg, D. & Bezanilla, F. Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. J. Gen. Physiol . 109, 27–39 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Conti, F. & Wanke, E. Channel noise in nerve membranes and lipid bilayers. Q. Rev. Biophys. 8, 451–506 (1975)

    Article  CAS  PubMed  Google Scholar 

  64. Sigworth, F. J. Sodium channels in nerve apparently have two conductance states. Nature 270, 265–267 (1977)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Lingle, C. J. Empirical considerations regarding the use of ensemble-variance analysis of macroscopic currents. J. Neurosci. Methods 158, 121–132 (2006)

    Article  PubMed  Google Scholar 

  66. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005)

    Article  PubMed  Google Scholar 

  67. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  69. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015)

    Article  PubMed  Google Scholar 

  71. Bell, J. M., Chen, M., Baldwin, P. R. & Ludtke, S. J. High resolution single particle refinement in EMAN2.1. Methods 100, 25–34 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lyumkis, D., Brilot, A. F., Theobald, D. L. & Grigorieff, N. Likelihood-based classification of cryo-EM images using FREALIGN. J. Struct. Biol. 183, 377–388 (2013)

    Article  CAS  PubMed  Google Scholar 

  73. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003)

    Article  CAS  PubMed  Google Scholar 

  74. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  75. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014)

    Article  CAS  PubMed  Google Scholar 

  79. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Ebrahim for assistance in data collection; R. W. Aldrich for comments on the manuscript; and members of the MacKinnon lab for assistance. This work was supported in part by GM43949. R.K.H. is a Howard Hughes Medical Institute postdoctoral fellow of the Helen Hay Whitney Foundation and R.M. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

X.T. and R.K.H. performed the experiments. X.T., R.K.H. and R.M. designed the experiments, analysed the results and prepared the manuscript.

Corresponding author

Correspondence to Roderick MacKinnon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks F. Horrigan, K. Magleby and J. Rubinstein for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Sequence alignment of Aplysia Slo1, human Slo1 and zebrafish (zf) Slo1.

Secondary structure elements are indicated above the sequences and disordered regions in the structure are indicated with dashed lines. Residues discussed in the text are highlighted in marine blue (Ca2+ bowl site), orange (Ca2+ RCK1 site), magenta (Mg2+ site) and cyan (selectivity filter). The three positively charged residues (R2, R3 and R4) and corresponding residues of the gating charge transfer centre are also coloured. Numbers above and below the sequences refer to the Aplysia and human Slo1, respectively.

Extended Data Figure 2 Cryo-EM density maps at the three divalent cation-binding sites.

a, Stereo view of density (grey wire mesh contoured at 6σ) near the Ca2+ bowl site and the Ca2+ RCK1 site demonstrating the structural connectivity between the two Ca2+ binding sites. The channel is shown as lines with the RCK1 domain coloured blue and RCK2 domain coloured red. The Ca2+ ions at the two sites are shown as marine blue and orange spheres, respectively. Side chains of Arg503, Glu912 and Tyr914 are shown as sticks and coloured according to atom type. b, Stereo view of density at the Mg2+ site (grey wire mesh contoured at 3σ). The channel is shown as lines with the RCK1 domain coloured blue and neighbouring VSD coloured orange. Side chains are shown as sticks and coloured according to atom type. The divalent cation is shown as a magenta sphere and water molecule as a cyan sphere.

Extended Data Figure 3 Cryo-EM reconstruction of Aplysia Slo1.

a, Representative image and 2D class averages of vitrified Aplysia Slo1. Scale bar, 500 Å. b, Angular distribution plot for Aplysia Slo1 reconstruction. c, Fourier shell correlation (FSC) curve for Aplysia Slo1. Overall resolution is estimated to be 3.47 Å on the basis of the FSC = 0.143 (dashed line) cut-off criterion. d, Cryo-EM density map coloured by local resolution using ResMap (in ångstroms)78.

Extended Data Figure 4 Representative segments of cryo-EM density.

Cryo-EM density maps are of high quality throughout the channel: density for regions of S0, S0′, S1, S2, S3, S4, S5, S6, S6–RCK1 linker, a bound partial lipid molecule, as well as representative regions of RCK1 and RCK2 domains are shown as grey wire mesh. The channel is shown as sticks and coloured according to atom type: yellow, carbon; red, oxygen; blue, nitrogen; orange, sulfur; and magenta, phosphorous.

Extended Data Figure 5 Validation of the refined model.

a, Refinement statistics for Slo1 model. b, Fourier shell correlation curves of refined model versus unmasked map for cross-validation. The black curve is the refined model compared to the full dataset, the red curve is the refined model compared to half-map 1 (used during refinement) and the blue curve is the refined model compared to half-map 2 (not used during refinement).

Extended Data Figure 6 Co-purified lipids in the structure.

a, b, Side and top views of the Slo1 transmembrane region showing the ordered lipid molecules (CPK representation, coloured according to atom type: yellow, carbon; red, oxygen; magenta, phosphorous). The channel is shown as blue Cα traces and K+ ions are shown as green spheres. c, Stereo view of detailed interactions of a lipid molecule with visible head group as well as two other partial lipids in the vicinity. Lipid molecules are shown as sticks and coloured as in a. The channel is shown as blue Cα traces and side chains involved in lipid interactions are shown as green sticks.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Hite, R. & MacKinnon, R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541, 46–51 (2017). https://doi.org/10.1038/nature20608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20608

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing