Abstract
THE hypothalamus plays a central role in the integrated regulation of energy homeostasis and body weight, and a number of hypothalamic neuropeptides, such as neuropeptide Y (ref. 1), galanin2, CRH (ref. 3), and GLP-1 (ref. 4), have been implicated in the mediation of these effects. To discover new hypothalamic peptides involved in the regulation of body weight, we used differential display polymerase chain reaction5 to identify messenger RNAs that are differentially expressed in the hypothalamus of ob/+ compared with ob/ob C57B1/6J mice. We show here that one mRNA that is overexpressed in the hypothalamus of ob/ob mice encodes the neuropeptide melanin-concentrating hormone (MCH). Fasting further increased expression of MCH mRNA in both normal and obese animals. Neurons containing MCH are located in the zona incerta and in the lateral hypothalamus. These areas are involved in regulation of ingestive behaviour, but the role of MCH in mammalian physiology is unknown. To determine whether MCH is involved in the regulation of feeding, we injected MCH into the lateral ventricles of rats and found that their food consumption increased. These findings suggest that MCH participates in the hypothalamic regulation of body weight.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Stanley, B. G., Anderson, K. C., Grayson, M. H. & Leibowitz, S. F. Physiol. Behav. 46, 173–177 (1989).
Kyrkouli, S. E., Stanley, B. G. & Leibowitz, S. F. Eur. J. Pharmacol. 122, 159–160 (1986).
Arase, K., York, D. A., Shimizu, H., Shargill, N. & Bray, G. A. Am. J. Physiol. 255, E255–259 (1988).
Turton, M. D. et al. Nature 379, 69–72 (1996).
Liang, P. & Pardee, A. B. Science 257, 967–971 (1992).
Nahon, J. L., Presse, F., Breton, C., Herview, G. & Schorpp, M. Ann. N.Y. Acad. Sci. 680, 111–129 (1993).
Breton, C., Presse, F., Hervieu, G. & Nahon, J. L. Molec. cell. Neurosci. 4, 271–284 (1993).
Tempel, D. L. & Leibowitz, S. F. Brain Res. Bull. 25, 821–825 (1990).
Kawauchi, H., Kawazoe, M., Tsubplawa, M., Kishida, M. & Baker, B. I. Nature 305, 423–432 (1983).
Kawauchi, H., Naito, N. & Ono, M. Ann. N.Y. Acad. Sci. 680, 64–77 (1993).
Skofitsch, G., Jacobowitz, D. M. & Zamir, N. Brain Res. Bull. 15, 635–639 (1985).
Zamir, N., Skofitsch, G., Bannon, M. J. & Jacobowitz, D. M. Proc. natn. Acad. Sci. U.S.A. 83, 1528–1531 (1986).
Naito, N., Kawazoe, I., Nakai, Y. & Kawauchi, H. Cell Tissue Res. 253, 291–295 (1988).
Thompson, R. C. & Watson, S. J. DNA Cell Biol. 9, 637–645 (1990).
Bittencourt, J. C. et al. J. comp. Neurol. 319, 218–245 (1992).
Nahon, J. L., Presse, F., Bittencourt, J. C., Sawchenko, P. E. & Vale, W. Endocrinology 125, 2056–2065 (1989).
Parkes, D. G. & Vale, W. Endocrinology 131, 1826–1831 (1992).
Risold, P. Y., Fellmann, D., Rivier, J., Vale, W. & Bugnon, C. Neurosci. Lett. 136, 145–149 (1992).
Oomura, Y. New Physiol. Sci. 2, 199–203 (1987).
Cechetto, D. F. & Saper, C. B. J. comp. Neurol. 272, 579–604 (1988).
Rance, T. & Baker, B. I. Gen. comp. Endocrin. 37, 64–73 (1979).
Matsunaga, T. O., Hruby, V. I., Lebl, M., De Lauro Castrucci, A. M. & Hadley, M. E. Peptides 10, 773–778 (1989).
Cone, R. D. et al. Ann. N.Y. Acad. Sci. 80, 342–363 (1993).
Bultman, S. J., Michaud, E. J. & Woychik, R. P. Cell 75, 1195–1204 (1992).
Klebrig, M. L., Wilkinson, J. E., Geisler, J. G. & Woychik, R. P. Proc. natn. Acad. Sci. U.S.A. 92, 4728–4732 (1995).
Lu, D. et al. Nature 371, 799–803 (1994).
Zhang, Y. et al. Nature 372, 425–432 (1994).
Pelleymounter, M. A. et al. Science 269, 540–543 (1995).
Jakubowski, M. & Roberts, R. L. J. Neuroendocrin. Appendix 2 (1991).
Sanacora, G., Kershaw, M., Finkelstein, J. A. & White, J. D. Endocrinology 127, 730–736 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Qu, D., Ludwig, D., Gammeltoft, S. et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247 (1996). https://doi.org/10.1038/380243a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/380243a0
This article is cited by
-
Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state
Nature Communications (2023)
-
Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity
Nature Neuroscience (2022)
-
Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding
Nature Metabolism (2022)
-
Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis
Nature Reviews Endocrinology (2021)
-
Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior
Scientific Reports (2021)