Abstract
Recently there has been growing interest both to extend ILP to description logics and to apply it to knowledge discovery in databases. In this paper we present a novel approach to association rule mining which deals with multiple levels of description granularity. It relies on the hybrid language \(\mathcal{A}\mathcal{L}\)-log which allows a unified treatment of both the relational and structural features of data. A generality order and a downward refinement operator for \(\mathcal{A}\mathcal{L}\)-log pattern spaces is defined on the basis of query subsumption. This framework has been implemented in SPADA, an ILP system for mining multi-level association rules from spatial data. As an illustrative example, we report experimental results obtained by running the new version of SPADA on geo-referenced census data of Manchester Stockport.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In J. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of 20th International Conference on Very Large Data Bases (pp. 487–499). Morgan Kaufmann.
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (Eds.). (2003). The description logic handbook: Theory, implementation and applications. Cambridge University Press.
Badea, L., & Nienhuys-Cheng, S.-W. (2000). A refinement operator for description logics. In J. Cussens & A. Frisch (Eds.), Inductive logic programming, vol. 1866 of Lecture Notes in Artificial Intigece (pp. 4059) Springer-Verlag.
Bhat, C., Handy, S., Kockelman, K., Mahmassani, H., Chen, Q., & Weston, L. (2000). Uban accessibility index: Literature review. Technical Report TX-Ol/7–4938–1, Texas Dept. of TranspofationUniversity of Texas, Austin.
Blockeel, H., De Raedt, L., Jacobs, N., & Demoen, B. (1999). Scaling up inductive logic programming by learning from interpretations. Data Mining and Knowledge Discovery, 3, 59–93.
Borgida, A. (1996). On therelative expressiveness of description logics and predicate logics. Artificial Intelligence, 82:1/2, 353–367.
Buntine, W. (1988). Generalized subsumption and its application to induction and redundancy. Artificial Intelligence, 36:2, 149–176.
Ceri, S., Gottlob, G., & Tanca, L. (1990). logic programming and databases. Springer.
Cohen, W., Borgida, A., & Hirsh, H. (1992). Computing least common subsumers in description logics. In Proc. of the 10th National Conf on Artifiial intelligence (pp. 754–760). The AAAI Press/The MIT Press.
Cohen, W., & Hirsh, H. (1994). Learning the. CLASSIC description logic: Thoretical and experimental results. In Proc. of the 4th Int. Conf on Principles ofKnowledge Representation and Reasoning (KR’94) (pp. 121–133). Morgan Kaufmann.
De Raedt, L., & Dehaspe, L.-(1997).Clausal discovery. Machine Learning, 26:2/3, 99–146.
De Raedt, L., & Deroski S (1994), First order jk-clausal theories are PAC-learnable. Artificial Intelligence, 70, 375–392.
Dehaspe, L., & Toivonen, H. (1999). Discovery of frequent DATALOG patterns. Data Mining and Knowledge Discover, 3,7–36.
Donini, F., Lenzerini, M., Nardi, D., & Schaerf, A. (1998). AC-log: Integrating datalog and description logics. Journal of intelligent Information Systems, 10:3, 227–252.
Džeroski, S. (1996). Inductive logic programming and knowledge discovery in databases. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining. (pp. 117–152). AAAI Press/The MIT Press.
Džeroski, S. (2001). Relational data mining applications: An overview. In S. Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 339–364). Springer.
Egenhofer, M., & Herring, J. (1994). Categorizing binary topological relations between regions, lines, and points in geographic databases. In M. Egenhofer, D. Mark, & J. Herring (Eds.), The 9-intersection: Fornmalism and its use for natural-language spatial predicates (pp. 183–271). Technical Report 94–1, U.S. NCGIA.
Ester, M., Frommelt, A., Kriegel, H.-P., & Sander, J. (2000). Spatial data mining: Database primitives, algorithms and efficient DBMS support. Data Mining and Knowledge Discovery, 4:2/3, 193–216.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery: An overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining, (pp. 1–34). AAAI Press/T’he MIT Press.
Ferri, F., Pourabbas, E., Rafanelli, M., & Ricci, F. (2000). Extending geographic databases for a query language to support queries involving statistical data. In G (Ed.), Proceedings of the 12th nt. Conf on Scientific and Statistical Database Management.
Flach, P., & Dieroski, S. (2001). Editorial: Inductive logic programming is coming of age. Machine Learning, 44:3,207–209.
Gatrell, A., & Senior, M. (1999). Health and health care applications. In P. Longley, M. Goodchild, D. Maguire, & D. Rhind (Eds.), Geographical information systems, vol. 2, Principles and technical issues, 2nd edn. vol. 2, (pp. 925–938). John Wiley & Sons.
Giuting, R. (1994). An introduction to spatial database systems. VLDB Journal, 3:4, 357–399.
Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large databases. In U. Dayal, P. Gray, & S. Nishio (Eds.), VLDB’95, Proceedings of 21th International Conference on Very Large Data Bases, Sept. 1–15, 1995, (pp. 420–431). Zurich, Switzerland. Morgan Kaufmann.
Han, J., & Fu, Y. (1999). Mining multiple-level association rules in large databases. IEEE Transactions on Knowledge and Data Engineering, 11:5.
Han, J., Koperski, K., & Stefanovic, N. (1997). GeoMiner: A system prototype for spatial data mining. In J. Peckham (Ed.), Proceedings ACM SIGMOD International Conference on Management of Data (pp. 553–556). ACM Press.
Helft, N. (1987). Inductive generalization: A logical framework. In I. Bratko, & N. Lava: (Eds.), Progress in Machine Learning-Proceedings of EWSL87: 2nd European Working Session On Learning (pp. 149–157). Wilmslow, U.K.: Sigma Press.
Kietz, J.-U., & Morik, K. (1994). A polynomial approach to the constructive induetioni of structural knowledge. Machine Learning, 14:1, 193–217.
Koperski, K., & Han. J. (1995). Discovery of spatial association rules in geographic information databases. In M. Egenhofer and J. Herring (Eds.), Advances in spatial databases, vol 951 of Lecture Notes in Computer Science (pp. 47–66). Springer.
Krogel, M.-A., & Wrobel, S. (2001). Transformation-basedlearning using multirelational aggregation. In C. Rouveirol & M. Sebag (Eds.), Inductive logic programming, vol. 2157 of Lecture Notes in Artificial Intelligence (pp. 142–155). Springer.
Levy, A., & Rousset, M.-C. (1998). Combining Horn rules and description logics in CARIN. Artificial Intelligence, 104, 165–209.
Lisi, F.A., Ferilli, S., & Fanizzi, N. (2002). Object identity as search bias for pattern spaces. In F. van Harmelen (Ed.), ECAI 2002. Proceedingsof the. 15th European Conference on Artificial Intelligence (pp. 375–379). Amsterdam: IOS Press.
Ludl, M.-C., & Widmer, G. (2000). Relative unsupervised discretization for association rule mining. In D. Zighed, H. Komorowski, & J. Zytkow (eds.), Principles f data mining and knowledge discovery, vol. 1910 of Lecture Notes in Artificial Intelligence (pp. 148–158). Springer.
Malerba, D., Esposito, F., Lanza, A., & Lisi, F. A. (2001). Machine learning for information extraction from topographic maps. in H. 6Miller, & J. Han (Eds.), Geographic data mining and knowledge discover (pp. 291–314). Taylor and Francis.
Malerba, D. & Lisi, F A. (2001a). Discovering associations between spatial objects: An ILP application. In C. Rouveirol & M. Sebag (Eds.), Inductive logic programming, vol. 2157 of Lecture Notes in Artificial Intelligence (pp. 156–163). Springer.
Malerba, D., & Lisi, F. A. (2001b). An ILP method for spatial association rule mining. In A. Knobbe, & D. van der Wallen (Eds.), Notes of the ECMIPKDD 2001 workshop on multi-relational data mining (pp. 18–29).
Mannila, H., & Toivonen, H. (1997). Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1:3, 241–258.
Martin, D. (1999). Spatial representation: The social scientist’s perspective. In P. Longley, M. Goodchild, D. Maguire, & D. Rhind (Eds.), Geographical information systems, vol. 1, principles and technical issues, 2nd edn., vol. 1. (pp. 71–80). John Wiley & Sons.
Nienhuys-Cheng, S., & de Wolf, R. ( 997). Foundations of inductive logic programming, vol. 1228 of Lecture Notes in Artificial Intelligence. Springer.
Nijssen, S., & Kok, J. (2001). Faster association rules for multiple relations. In B. Nebel (Ed.), Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (pp. 891–896). Morgan Kaufmann.
Plotkin, G. (1970). A note on inductive generalization. Machine Intelligence, 5, 153–163.
Popelinski, L. (1998). Knowledge discovery in spatial data by means of ILP. In J. Zytkow, & M. Quafalou (Eds.), Principles of data mining and knowledge discovery, second European symposium, PKDD ‘98, vol. 1510 of Lecture Notes in Artificial Intelligence (pp. 185–193). Springer.
Reiter, R. (1980). Equality and domain closure in first order databases. Journal of ACM, 27, 235–249.
Rouveirol, C., & Ventos, V. (2000). Towards learning in CARIN-ACV. In J. Cussens & A. Frisch (Eds.), Inductive logic programming, vol. 1866 of Lecture Notes in Artificial Intelligence (pp. 191–208). Springer.
Schmidt-Schauss, M., & Smolka, G. (1991). Attributive concept descriptions with complements. Artificial Intelligence, 48:1, 1–26.
Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., & Ferilli, S. (1998). A logic framework for the incremental inductive synthesis of datalog theories. In N. Fuchs (Ed.), Proceedings of 7th international Workshop on Logic Program Synthesis and Transformation, vol. 1463 of Lecture Notes in Computer Science (pp. 300–321). Springer.
Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In U. Dayal, P. Gray, & S. Nishio (Eds.), Proceedings of 21th International Conference on Very Large Data Bases (pp. 407–419). MorganKaufmann.
Weber, I. (1999). A declarative language bias for levelwise search of first-order regularities. In Z Ras & A. Skowron (Eds.), Foundations of intelligent systems, vol. 1609 of Lecture Notes in Artificial Intelligence (pp. 253–261). Springer-Verlag.
Rights and permissions
About this article
Cite this article
Lisi, F.A., Malerba, D. Inducing Multi-Level Association Rules from Multiple Relations. Mach Learn 55, 175–210 (2004). https://doi.org/10.1023/B:MACH.0000023151.65011.a3
Issue Date:
DOI: https://doi.org/10.1023/B:MACH.0000023151.65011.a3