Abstract
Cultivation of microalgae using natural and man-made open-ponds istechnologically simple, but not necessary cheap due to the high downstream processing cost. Products of microalgae cultured in open-pondscould only be marketed as value-added health food supplements, specialityfeed and reagents for research. The need to achieve higher productivityand to maintain monoculture of algae led to the development of enclosedtubular and flat plate photobioreactors. Despite higher biomassconcentration and better control of culture parameters, data accumulatedin the past 25 years have shown that the illuminated areal, volumetricproductivity and cost of production in these enclosed photobioreactors arenot better than those achievable in open-pond cultures. The technicaldifficulty in sterilizing these photobioreactors has hindered their applicationfor the production of high value pharmaceutical products. The alternativeof cultivating microalgae in heterotrophic mode in sterilizable fermentorshas achieved some commercial success. The maximum specific growth ratesof heterotrophic algal cultures are in general slower than those measured inphotosynthetic cultures. The biomass productivity of heterotrophic algalcultures has yet to achieve a level that is comparable to industrialproduction of yeast and other heterotrophic microrganisms. Mixotrophiccultivation of microalage takes advantage of their ability to utilise organicenergy and carbon substrates and perform photosynthesis concurrently. Moreover, production of some algal metabolites is light regulated. Futuredesign of sterilizable bioreactors for mixotrophic cultivation of microalgaemay have to consider the organic substrate the main source of energy andlight the supplemental source of energy, a change in mindset.
Similar content being viewed by others
References
Atkinson B, Mavituna F (1983) Biochemical Engineering and Biotechnology Handbook. MacMillan, Surrey: 1117 pp.
Barclay WR, Maeger KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. appl. Phycol. 6: 123-129.
Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University, Cambridge: 293 pp.
Borowitzka MA (1992) Algal biotechnology products and process-Matching science and economics. J. appl. Phycol. 4: 267-279.
Borowitzka MA (1997) Microalgae for aquaculture: Opportunities and constrains. J. appl. Phycol. 9: 393-401.
Borowitzka MA (1999) Commercial production of microalgae: Ponds, tanks, tubes and fermentors. J. Biotechnol. 70: 313-321.
Chaumont D (1993) Biotechnology of algal biomass production: A review of systems for outdoor mass culture. J. appl. Phycol. 5: 593-604.
Chaumont D, Thepenier C, Gudin C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum-From laboratory to pilot plant. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 199-208.
Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. appl. Phycol. 3: 203-209.
Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem. 31: 601-604.
Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20: 221-224.
Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol. Lett. 18: 603-608.
Cohen Z (1999) Porphyridium cruentum. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.
Cook JR, Heinrich B (1965) Glucose vs acetate metabolism in Euglena. J. Protozool. 12: 581-583
Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a microalgal mollusc feed. Bioresource Technol. 38: 245-250.
Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: Productivity and operational parameters. Algol. Stud. (Trebon) 76: 129-147.
Droop MR (1955) Carotogenesis in Haematococcus pluvialis. Nature, London 175: 42.
Droop MR (1974) Heterotrophy of carbon. In Stewart WDP (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 530-559.
Edmund T, Lee Y, Bazin MJ (1990) A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures. New Phytol. 116: 331-335.
Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis heterotrophic fast growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18:199-205.
Fernandez AFG, Camacho GF, Perez SJA, Sevilla FJM, Grima ME (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioengng. 58: 605-616.
Garcia MCC, Sevilla JMF, Fernandez FGA, Grima EM, Camacho FG (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J. appl. Phycol. 12: 239-248.
Gladue RM (1991) Heterotrophic microalgae production: Potential for application to aquaculture feeds. In Fulks W, Main KL (eds), Rotifer and Microalgae Culture Systems, Oceanic Institute, Honolulu, pp. 275-286.
Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J. appl. Phycol. 6: 131-141.
Grima EM, Perez JAS, Camacho FG, Sanchez JLG, Fernandez FGA, Alonso DL (1994) Outdoor culture of Isochrysis galbana Alii-4 in a closed tubular photobioreactor. J. Biotechnol. 37: 159-166.
Grima EM, Perez JAS, Camacho FG, Sevilla JMF, Fernandez FGA (1996) Productivity analysis of outdoor chemostat culture in tubular air-lift photobiorectors. J. appl. Phycol. 8: 369-380.
Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J. appl. Phycol. 6: 331-335.
Grobbelaar JU (2000) Physiological and technological considerations for optimisingmass algal cultures. J. appl. Phycol. 12: 201-206.
Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. appl. Phycol. 8: 335-343.
Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors. In Palz W, Pirruitz D (eds), Energy from Biomass Series E Vol. 5, Reidel, Dordrecht, pp. 184-193.
Guterman H, Ben Yaskov S, Vonshak A (1989) Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol. Bioengng. 34: 143-152.
Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol. 53: 14-20.
Hoare DS, Hoare SL, Moore RB (1967) The photoassimilation of organic compounds by autotrophic blue-green algae. J. gen. Microbiol. 49: 351-370.
Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioengng 51: 51-60.
Hu Q, Richmond A (1994) Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. appl. Phycol. 6: 391-396.
Hu Q, Richmond A (1996) Productivity and photosynthetic effi-ciency of Spirulina platensis as affected by light intensity, cell density and rate of mixing in a flat plate photobioreactor. J. appl. Phycolo. 8: 139-145
Javanmardian M, Palsson B (1991) High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnol. Bioeng. 38: 1182-1189.
Kamiya A, Kowallik W(1987) Photoinhibition of glucose uptake in Chlorella. Plant Cell Physiol. 28: 611-619.
Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentsenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J. appl. Phycol. 9: 559-563.
Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferm. Bioengng. 74: 12-20.
Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol. Lett. 19: 507-509.
Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of th microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 70: 357-362.
Kyle DJ, Gladue RM (1991) Eicosapentaenoic acids and methods for their production. International Patent Application, Patent Cooperation Treaty Publication WO91/14427, October 3, 1991.
Lee YK (1986) Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend. Trends Biotechnol. 4: 186-189.
Lee YK (1990) Genetic and technological improvements with respect to mass cultivation of microalgae. In Lee YK, Nga BH, Yeo V (eds), Microbiology Applications in Food Biotechnology. Institute of Standard & Industrial Research, Singapore, pp. 61-73.
Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J. appl. Phycol. 9: 403-411.
Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. appl. Phycol. 8: 163-169.
Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J. appl. Phycol. 7: 47-51.
Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioengng 38: 995-1000.
Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol. Bioengng 40: 1119-1122.
Lee YK, Richmond A (1998) Bioreactor technology for mass cultivation of photoautotrophic microalgae. In Fingerman M, Nagabhushanam R, Thompson M (eds), Recent Advances in Marine Biotechnology Vol. 2, Environmental Marine Biotechnology. Oxford & IBH, New Delhi, pp. 271-288.
Lee YK, Zhang DH (1999) Production of astaxanthin by Haematococcus. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.
Lewin JC, Lewin RA (1967) Culture and nutrition of some apochlorotic diatoms. J. gen. Microbiol. 11: 361-367.
Ma X, Chen KW, Lee YK (1997) Growth of Chlorella outdoor in a changing light environment. J appl. Phycol. 9: 425-430.
Marquez FJ, Nishio N, Nagai S (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J. Chem. Tech. Biotechnol. 62: 159-164.
Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioengng 76: 408-410.
Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol. 95: 1150-1155.
Matsunaga T, Takeyama H, Sudo H, Oyama N, Nriura S, Takano H, Hirano m, Burgess JG, Sode K, Nakamura N (1991) Glutamate production from CO2 by marine cyanobacterium Synechococus sp. using a novel photobioreactor employing light-diffusing optical fibers. Appl. Biochem. Biotechnol. 28/29: 157-167.
Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J. appl. Phycol. 10: 515-525.
Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for largescale monoculture of microalgae. J. Biotechnol. 70: 249-270.
Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresenel lenses and transmitted through optical fibers. Bioengng Symp. 15: 331-345.
Muller-Feuga A, Guedes RL, Herve A, Durand P (1998) Comparison of artificial light photobioreactors and other production systems using porphyridium cruentum. J. appl. Phycol. 10: 83-90.
Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J. appl. Phycol. 9: 503-510.
Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioengng. 23: 1121-1132.
Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation. Development of processes for efficienct light utilization in photobioreactors. J. appl. Phycol. 12: 207-218.
Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. appl. Phycol. 10: 67-74.
Ogbonna JC, Toshihiko S, Hideo T (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J. Biotechnol. 70: 289-297.
Pearce J, Carr NG (1969) The incorporation and metabolism of glucose by Anabaena variabilis. J. gen. Microbiol. 54: 451-462.
Pirt SJ, Lee YK, Richmond A, Pirt Watts M (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J. Chem. Technol. Biotechnol. 30: 25-34.
Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol. 33: 35-58.
Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 209-218.
Post AF, Dubinsky Z, Wyman K, Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Marine Biol. 83: 231-238.
Pulz O (1994) Open-air and semi-closed cultivation systems for the mass cultivation of microalgae. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in the Asia-Pacific Region. University of Malaya, Kuala Lumpur, pp. 113-117.
Richmond A (1986) Handbook of Microalgal Mass Culture. CRC, Boca Raton: 528 pp.
Richmond A (1996) Efficient utilization of high irradiance for production of photoautotropic cell mass: A survey. J. appl. Phycol. 8: 381-387.
Richmond A (2000) Microalgal biotechnology at the turn of the millennium: A personal view. J. appl. Phycol. 12: 441-451.
Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoor. J. appl. Phycol. 5: 327-332.
Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. appl. Phycol. 2: 195-206.
Robinson LF (1987) Improvements relating to biomass production. European Patent 0,239,272.
Running JA, Huss RJ, Olson PT (1994) Heterotrophic production of ascorbic acid by microalgae. J. appl. Phycol. 6: 99-104.
Setlik I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol. Stud. (Trebon) 1: 11.
Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J. Bact. 94: 972-983.
Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In Shelef G, Soeder CJ (eds), Algae Biomass. Elsevier, Amsterdam, pp. 97-113.
Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.
Tan CK, Johns MR (1991) Fatty acid production by hetrotrophic Chlorella saccharophila. Hydrobiologia 215: 13-19.
Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric. biol. Chem. 53: 305-312.
Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11: 61-74.
Tredici MR, Carlozzi P, Zittelli CG, Materassi R (1991) A vertical aveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Biores.Technol. 38: 153-159.
Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221-231.
Tsavalos AJ, Day JG (1994) Development of media for the mixotrophic/ heterotrophic culture of Brachiomonas submarina. J. appl. Phycol. 6: 431-433.
Valiente EF, Nieva M, Avendano C, Maeso ES (1992) Uptake and utilization of fructose by Anabaena variabilis ATCC 29413. Effect on respiration and photosynthesis. Plant Cell Physiol. 33: 307-313.
Vonshak A (1997) Outdoor mass production of Spirulina: The basic concept. In Vonshak A (ed.), Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis, London, pp. 79-99.
Wood BJB, Grimson PHK, German JB, Turner M (1999) Photoheterotrophy in the production of phytoplankton organisms. J. Bact. 70: 175-183.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lee, YK. Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology 13, 307–315 (2001). https://doi.org/10.1023/A:1017560006941
Issue Date:
DOI: https://doi.org/10.1023/A:1017560006941