Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-02T02:37:25.647Z Has data issue: false hasContentIssue false

Adaptivity with moving grids

Published online by Cambridge University Press:  08 May 2009

Chris J. Budd
Affiliation:
Centre for Nonlinear Mechanics, University of Bath, Bath BA2 7AY, UKE-mail:mascjb@bath.ac.uk
Weizhang Huang
Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045, USAE-mail:huang@math.ku.edu
Robert D. Russell
Affiliation:
Department of Mathematics, Simon Fraser University, Burnaby V5A 1S6, CanadaE-mail:rdr@cs.sfu.ca

Abstract

In this article we survey r-adaptive (or moving grid) methods for solving time-dependent partial differential equations (PDEs). Although these methods have received much less attention than their h- and p-adaptive counterparts, particularly within the finite element community, we review the substantial progress that has been made in developing more robust and reliable algorithms and in understanding the basic principles behind these methods, and we give some numerical examples illustrative of the wide classes of problems for which these methods are suitable alternatives to the traditional ones.

More specifically, we first examine the basic geometric properties of moving meshes in both one and higher spatial dimensions, and discuss the discretization process for PDEs on such moving meshes (both structured and unstructured). In particular, we consider the issues of mesh regularity, equidistribution, alignment, and associated variational methods. An overview is given of the general interpolation error analysis for a function or a truncation error on such an adaptive mesh. Guided by these principles, we show how to design effective moving mesh strategies. We then examine in more detail how these strategies can be implemented in practice. The first class of methods which we consider are based upon controlling mesh density and hence are called position-based methods. These make use of a so-called moving mesh PDE (MMPDE) approach and variational methods, as well as optimal transport methods. This is followed by an analysis of methods which have a more Lagrange-like interpretation, and due to this focus are called velocity-based methods. These include the moving finite element method (MFE), the geometric conservation law (GCL) methods, and the deformation map method. Finally, we present a number of specific types of examples for which the use of a moving mesh method is particularly effective in applications. These include scale-invariant problems, blow-up problems, problems with moving fronts and problems in meteorology. We conclude that, whilst r-adaptive methods are still in their relatively early stages of development, with many outstanding questions remaining, they have enormous potential and indeed can produce an optimal form of adaptivity for many problems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adjerid, S. and Flaherty, J. E. (1986), ‘A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations’, SIAM J. Numer. Anal. 23, 778795.CrossRefGoogle Scholar
Ainsworth, M. and Oden, J. T. (2000), A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics, Wiley-Interscience.CrossRefGoogle Scholar
Almeida, V. F. (1999), ‘Domain deformation mapping: Application to variational mesh generation’, SIAM J. Sci Comput. 20, 12521275.CrossRefGoogle Scholar
Anderson, D. A. and Rai, M. M. (1983), The use of solution adaptive grids in solving partial differential equations, in Numerical Grid Generation (Thompson, J. H., ed.), pp. 317338.Google Scholar
Andreev, V. B. and Kopteva, N. B. (1998), ‘On the convergence, uniform with respect to a small parameter, of monotone three-point difference approximations’, Diff. Urav. 34, 921929.Google Scholar
Ascher, U., Christiansen, J. and Russell, R. D. (1981), ‘Collocation software for boundary value ODEs’, ACM Trans. Math. Software 7, 209222.CrossRefGoogle Scholar
Babuška, I. and Rheinboldt, W. C. (1979), ‘Analysis of optimal finite element meshes in ℝ1’, Math. Comput. 33, 435463.Google Scholar
Baines, M. J. (1994), Moving Finite Elements, Clarendon Press, Oxford.CrossRefGoogle Scholar
Baines, M. J. and Wakelin, S. L. (1991), Equidistribution and the Legendre transformation. Numerical Analysis report 4/91, University of Reading.Google Scholar
Baines, M. J., Hubbard, M. E., and Jimack, P. K. (2005), ‘A moving mesh finite strategy for the adaptive solution of time-dependent partial differential equations with moving boundaries’, Appl. Numer. Math. 54, 450469.CrossRefGoogle Scholar
Baines, M. J., Hubbard, M. E., Jimack, P. K., and Jones, A. C. (2006), ‘Scale-invariant moving finite elements for nonlinear partial differential equations in two dimensions’, Appl. Numer. Math. 56, 230252.CrossRefGoogle Scholar
Balinski, M. L. (1986), ‘A competitive (dual) simplex method for the assignment problem’, Math. Program. 34, 125141.CrossRefGoogle Scholar
Bank, R. E. and Smith, R. K. (1997), ‘Mesh smoothing using a posteriori error estimates’, SIAM J. Numer. Anal. 34, 979997.CrossRefGoogle Scholar
Barenblatt, G. I. (1996), Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics, Cambridge Texts in Applied Mathematics, Cambridge University Press.CrossRefGoogle Scholar
Beckett, G. and Mackenzie, J. A. (2000), ‘Convergence analysis of finite-difference approximations on equidistributed grids to a singularly perturbed boundary value problem’, Appl. Numer. Math. 35, 87109.CrossRefGoogle Scholar
Beckett, G. and Mackenzie, J. A. (2001 a), ‘On a uniformly accurate finite difference approximation of a singularly perturbed reaction–diffusion problem using grid equidistribution’, J. Comput. Appl. Math. 131, 381405.CrossRefGoogle Scholar
Beckett, G. and Mackenzie, J. A. (2001 b), ‘Uniformly convergent high order finite element solutions of a singularly perturbed reaction–diffusion equation using mesh equidistribution’, Appl. Numer. Math. 39, 3145.CrossRefGoogle Scholar
Beckett, G., Mackenzie, J. A. and Robertson, M. L. (2001 a), ‘A moving mesh finite element method for the solution of two-dimensional Stefan problems’, J. Comput. Phys. 186, 500518.CrossRefGoogle Scholar
Beckett, G., Mackenzie, J. A., Ramage, A. and Sloan, D. M. (2001 b), ‘On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution’, J. Comput. Phys. 167, 372392.CrossRefGoogle Scholar
Benamou, J. D. and Brenier, Y. (2000), ‘A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem’, Numer. Math. 84, 375393.CrossRefGoogle Scholar
Berger, M. and Kohn, R. (1988), ‘A rescaling algorithm for the numerical calculation of blowing-up solutions’, Comm. Pure. Appl. Math. 41, 841863.CrossRefGoogle Scholar
Berzins, M. (1998), ‘A solution-based triangular and tetrahedral mesh quality indicator’, SIAM J. Sci. Comput. 19, 20512060.CrossRefGoogle Scholar
Blom, J. G. and Verwer, J. G. (1989), On the use of the arclength and curvature monitor in a moving grid method which is based on the method of lines. Technical Report NM-N8902, CWI, Amsterdam.Google Scholar
Bochev, P., Liao, G. and Pena, G. d. (1996), ‘Analysis and computation of adaptive moving grids by deformation’, Numer. Methods PDEs 12, 489506.3.0.CO;2-I>CrossRefGoogle Scholar
de Boor, C. (1973), Good Approximations by Splines with Variable Knots II, Vol. 363 of Lecture Notes in Mathematics, Springer, Berlin.Google Scholar
Brackbill, J. U. (1993), ‘An adaptive grid with directional control’, J. Comput. Phys. 108, 3850.CrossRefGoogle Scholar
Brackbill, J. U. and Saltzman, J. S. (1982), ‘Adaptive zoning for singular problems in two dimensions’, J. Comput. Phys. 46, 342368.CrossRefGoogle Scholar
Branets, L. and Carey, G. F. (2003), A local cell quality metric and variational grid smoothing algorithm, in Proc. 12th International Meshing Roundtable, Sandia National Laboratories, Albuquerque, NM.Google Scholar
Brenier, Y. (1991), ‘Polar factorization and monotone rearrangement of vector-valued functions’, Comm. Pure Appl. Math. 44, 375417.CrossRefGoogle Scholar
Budd, C. J. and Dorodnitsyn, V. A. (2001), ‘Symmetry adapted moving mesh schemes for the nonlinear Schrödinger equation’, J. Phys. A 34, 103887–10400.CrossRefGoogle Scholar
Budd, C. J. and Piggott, M. D. (2005), Geometric integration and its applications, in Handbook of Numerical Analysis (Cucker, F., ed.), pp. 35139.Google Scholar
Budd, C. J. and Williams, J. F. (2006), ‘Parabolic Monge–Ampère methods for blow-up problems in several spatial dimensions’, J. Phys. A 39, 54255444.CrossRefGoogle Scholar
Budd, C. J. and Williams, J. F. (2009), Mesh generation using the parabolic Monge–Ampèere method. Submitted.CrossRefGoogle Scholar
Budd, C. J., Huang, W. Z., and Russell, R. D. (1996), ‘Moving mesh methods for problems with blow-up’, SIAM J. Sci. Comput. 17, 305327.CrossRefGoogle Scholar
Budd, C. J., Chen, S.-N. and Russell, R. D. R. (1999 a), ‘New self-similar solutions of the nonlinear Schrödinger equation, with moving mesh computations’, J. Comput. Phys. 152, 756789.CrossRefGoogle Scholar
Budd, C. J., Collins, G. J., Huang, W.-Z. and Russell, R. D. (1999 b), ‘Self-similar discrete solutions of the porous medium equation’, Philos. Trans. Roy. Soc. London A 357, 10471078.CrossRefGoogle Scholar
Budd, C. J., Leimkuhler, B., and Piggott, M. D. (2001), ‘Scaling invariance and adaptivity’, Appl. Numer. Math. 39, 261288.CrossRefGoogle Scholar
Budd, C. J., Galaktionov, V. A. and Williams, J. F. (2004), ‘Self-similar blow-up in higher-order semilinear parabolic equations’, SIAM J. Appl. Math. 64, 17751809.CrossRefGoogle Scholar
Budd, C. J., Carretero-Gonzalez, R., and Russell, R. D. (2005), ‘Precise computations of chemotactic collapse using moving mesh methods’, J. Comput. Phys. 202, 462487.CrossRefGoogle Scholar
Budd, C. J., Piggott, M. D., and Williams, J. F. (2009), Adaptive numerical methods and the geostrophic coordinate transformation. Submitted to Monthly Weather Review.Google Scholar
Caffarelli, L. A. (1992), ‘The regularity of mappings with a convex potential’, J. Amer. Math. Soc. 5, 99104.CrossRefGoogle Scholar
Caffarelli, L. A. (1996), ‘Boundary regularity of maps with convex potentials’, Ann. of Math. 3, 453496.CrossRefGoogle Scholar
Cai, X., Fleitas, D., Jiang, B. and Liao, G. (2004), ‘Adaptive grid generation based on the least squares finite element method’, Comput. Math. Appl. 48, 10771085.CrossRefGoogle Scholar
Calhoun, D. A., Helzel, C. and LeVeque, R. J. (2008), ‘Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains’, SIAM Review 50, 723752.CrossRefGoogle Scholar
Cao, W. (2005), ‘On the error of linear interpolation and the orientation, aspect ratio and internal angles of a triangle’, SIAM J. Numer. Anal. 43, 1940.CrossRefGoogle Scholar
Cao, W. (2007 a), ‘An interpolation error estimate on anisotropic meshes in ℝn and optimal metrics for mesh refinement’, SIAM J. Numer. Anal. 45, 23682391CrossRefGoogle Scholar
Cao, W. (2007 b), ‘Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements’, SIAM J. Sci. Comput. 29, 756781.CrossRefGoogle Scholar
Cao, W. (2008), ‘An interpolation error estimate in ℝ2 based on the anisotropic measures of higher order derivatives’, Math. Comput. 77, 265286.CrossRefGoogle Scholar
Cao, W., Huang, W., and Russell, R. D. (1999 a), ‘An r-adaptive finite element method based upon moving mesh PDEs’, J. Comput. Phys. 149, 221244.CrossRefGoogle Scholar
Cao, W., Huang, W., and Russell, R. D. (1999 b), ‘A study of monitor functions for two-dimensional adaptive mesh generation’, SIAM J. Sci. Comput. 20, 19781994.CrossRefGoogle Scholar
Cao, W., Huang, W., and Russell, R. D. (2002), ‘A moving mesh method based on the geometric conservation law’, SIAM J. Sci. Comput. 24, 118142.CrossRefGoogle Scholar
Cao, W., Huang, W., and Russell, R. D. (2003), ‘Approaches for generating moving adaptive meshes: Location versus velocity’, Appl. Numer. Math. 47, 121138.CrossRefGoogle Scholar
Capiński, M. and Kopp, E. (2004), Measure, Integral and Probability, Springer Undergraduate Mathematics Series, Springer.Google Scholar
Carey, G. (1997), Computational Grids: Generation, Adaptation and Solution Strategies, Taylor and Francis.Google Scholar
Carlson, N. and Miller, K. (1998 a), ‘Design and application of a gradient-weighted moving finite element code I: In 1-D’, SIAM J. Sci. Comput. 19, 728765.CrossRefGoogle Scholar
Carlson, N. and Miller, K. (1998 b), ‘Design and application of a gradient-weighted moving finite element code II: In 2-D’, SIAM J. Sci. Comput. 19, 766798.CrossRefGoogle Scholar
Ceniceros, H. D. (2002), ‘A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation’, Comm. Pure Appl. Anal. 4, 114.Google Scholar
Ceniceros, H. D. and Hou, T. Y. (2001), ‘An efficient dynamically adaptive mesh for potentially singular solutions’, J. Comput. Phys. 172, 609639.CrossRefGoogle Scholar
Chacón, L. and Lapenta, G. (2006), ‘A fully implicit, nonlinear adaptive grid strategy’, J. Comput. Phys. 212, 703717.CrossRefGoogle Scholar
Chartrand, R., Vixie, K. R., Wohlberg, B. and Bollt, E. M. (2007), A gradient descent solution to the Monge–Kantorovich problem. math.lanl.gov/Research/Publications/Docs/chartrand-2007-gradient.pdf.Google Scholar
Chen, K. (1994), ‘Error equidistribution and mesh adaptation’, SIAM J. Sci. Comput. 15, 798818.CrossRefGoogle Scholar
Chen, L., Sun, P. and Xu, J. (2007), ‘Optimal anisotropic meshes for minimizing interpolation errors in the Lp-norm’, Math. Comput. 76, 179204.CrossRefGoogle Scholar
Chynoweth, S. and Baines, M. J. (1989), Legendre transform solutions to semigeostrophic frontogenesis, in Finite Element Analysis in Fluids (Chung, T. J. and Kerr, G. R., eds), pp. 697703.Google Scholar
Chynoweth, S. and Sewell, M. J. (1989), ‘Dual variables in semigeostrophic theory’, Proc. R. Soc. London A 424, 155186.Google Scholar
Cullen, M. J. P. (1989), ‘Implicit finite difference methods for modelling discontinuous atmospheric flows’, J. Comput. Phys. 81, 319348.CrossRefGoogle Scholar
Cullen, M. J. P. (2006), A Mathematical Theory of Large-Scale Atmosphere/Ocean Flow, Imperial College Press.CrossRefGoogle Scholar
Cullen, M. J. P. and Purser, R. J. (1984), ‘An extended Lagrangian theory of semigeostrophic frontogenesis’, J. Atmos. Sci. 41, 14771497.2.0.CO;2>CrossRefGoogle Scholar
Cullen, M. J. P., Norbury, J., and Purser, R. J. (1991), ‘Generalised Lagrangian solutions for atmospheric and oceanic flows’, SIAM J. Appl. Math. 51, 2031.CrossRefGoogle Scholar
Dacorogna, B. and Moser, J. (1990), ‘On a partial differential equation involving the Jacobian determinant’, Ann. Inst. Henri Poincaré Analyse non linéaire 7, 126.CrossRefGoogle Scholar
Dean, E. and Glowinski, R. (2003), ‘Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: An augmented Lagrangian approach’, Comptes rendus Mathématique 336, 779784.CrossRefGoogle Scholar
Dean, E. and Glowinski, R. (2004), ‘Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: A least-squares approach’, Comptes rendus Mathématique 339, 887892.CrossRefGoogle Scholar
Delzanno, G., Chacón, L., Finn, J., Chung, Y. and Lapenta, G. (2008), ‘An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge–Kantorovich optimization’, J. Comput. Phys. 227, 98419864.CrossRefGoogle Scholar
Di, Y., Li, R., Tang, T. and Zhang, P. (2005), ‘Moving mesh finite element methods for the incompressible Navier–Stokes equations’, SIAM J. Sci. Comput. 26, 10361056.CrossRefGoogle Scholar
Dorfi, E. A. and Drury, L. O'C. (1987), ‘Simple adaptive grids for 1-D initial value problems’, J. Comput. Phys. 69, 175195.CrossRefGoogle Scholar
Dorodnitsyn, V. A. (1991), ‘Transformation groups in mesh spaces’, J. Sov. Math. 55, 14901517.CrossRefGoogle Scholar
Dorodnitsyn, V. A. (1993 a), Finite-difference models exactly inheriting symmetry of original differential equations, in Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics (Ibragimov, N. et al. , eds), Kluwer, Dordrecht, pp. 191201.Google Scholar
Dorodnitsyn, V. A. (1993 b), ‘Finite difference analog of the Noether theorem’, Dokl. Akad. Nauk 328, 678690.Google Scholar
Dorodnitsyn, V. A. and Kozlov, R. (1997), The whole set of symmetry preserving discrete versions of a heat transfer equation with a source. Preprint 4/1997, NTNU, Trondheim.Google Scholar
Dvinsky, A. S. (1991), ‘Adaptive grid generation from harmonic maps on Riemannian manifolds’, J. Comput. Phys. 95, 450476.CrossRefGoogle Scholar
Eisman, P. R. (1985), ‘Grid generation for fluid mechanics computation’, Ann. Rev. Fluid Mech. 17, 487522.CrossRefGoogle Scholar
Eisman, P. R. (1987), ‘Adaptive grid generation’, Comput. Meth. Appl. Mech. Engrg 64, 321376.CrossRefGoogle Scholar
Evans, L. C. (1999), Partial differential equations and Monge–Kantorovich mass transfer, in Current Developments in Mathematics, 1997 (Cambridge, MA), International Press, Boston, MA, pp. 65126.Google Scholar
Feng, X. and Neilan, M. (2009), ‘Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations’, J. Sci. Comput., to appear.CrossRefGoogle Scholar
Feng, W. M., Yu, P., Hu, S. Y., Liu, Z. K., Du, Q. and Chen, L. Q. (2006), ‘Spectral implementation of an adaptive moving mesh method for phase-field equations’, J. Comput. Phys. 220, 498510.CrossRefGoogle Scholar
Fulton, S. (1989), ‘Multigrid solution of the semigeostrophic invertibility relation’, Monthly Weather Review 117, 20592066.2.0.CO;2>CrossRefGoogle Scholar
Gangbo, W. and McCann, R. J. (1996), ‘The geometry of optimal transport’, Acta Math. 177, 113161.CrossRefGoogle Scholar
Gutiérrez, C. E. (2001), The Monge–Ampère Equation, Vol. 44 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, MA.Google Scholar
Haker, S. and Tannenbaum, A. (2003), On the Monge–Kantorovich problem and image warping, in Mathematical Methods in Computer Vision, Vol. 133 of IMA Vol. Math. Appl., Springer, New York, pp. 6585.CrossRefGoogle Scholar
Hawken, D. F., Gottlieb, J. J. and Hansen, J. S. (1991), ‘Review of some adaptive node-movement techniques in finite element and finite difference solutions of PDEs’, J. Comput. Phys. 95, 254302.CrossRefGoogle Scholar
He, Y. and Huang, W. (2009), A posteriori error analysis for finite element solution of elliptic differential equations using equidistributing meshes. Submitted.Google Scholar
Huang, W. (2001 a), ‘Practical aspects of formulation and solution of moving mesh partial differential equations’, J. Comput. Phys. 171, 753775.CrossRefGoogle Scholar
Huang, W. (2001 b), ‘Variational mesh adaption: Isotropy and equidistribution’, J. Comput. Phys. 174, 903924.CrossRefGoogle Scholar
Huang, W. (2005 a), ‘Measuring mesh qualities and application to variational mesh adaption’, SIAM J. Sci. Comput. 26, 16431666.CrossRefGoogle Scholar
Huang, W. (2005 b), ‘Metric tensors for anisotropic mesh generation’, J. Comput. Phys. 204, 663665.CrossRefGoogle Scholar
Huang, W. (2005 c), ‘Convergence analysis of finite element solution of one-dimensional singularly perturbed differential equations on equidistributing meshes’, Internat. J. Numer. Anal. Model. 2, 5774.Google Scholar
Huang, W. (2007), Anisotropic mesh adaption and movement, in Adaptive Computations: Theory and Algorithms (Tang, T. and Xu, J., eds), Science Press, Beijing, pp. 68158.Google Scholar
Huang, W. and Leimkuhler, B. (1997), ‘The adaptive Verlet method’, SIAM J. Sci. Comput. 18, 239256.CrossRefGoogle Scholar
Huang, W. and Li, X. P. (2009), ‘An anisotropic mesh adaptation method for the finite element solution of variational problems’, Finite Elements in Analysis and Design, to appear.Google Scholar
Huang, W. and Russell, R. D. (1996), ‘A moving collocation method for solving time dependent partial differential equations’, Appl. Numer. Math. 20, 101116.CrossRefGoogle Scholar
Huang, W. and Russell, R. D. (1997 a), ‘Analysis of moving mesh partial differential equations with spatial smoothing’, SIAM J. Numer. Anal. 34, 11061126.CrossRefGoogle Scholar
Huang, W. and Russell, R. D. (1997 b), ‘A high dimensional moving mesh strategy’, Appl. Numer. Math. 26, 6376.CrossRefGoogle Scholar
Huang, W. and Russell, R. D. (1999), ‘A moving mesh strategy based on a gradient flow equation for two-dimensional problems’, SIAM J. Sci. Comput. 20, 9981015.CrossRefGoogle Scholar
Huang, W. and Russell, R. D. (2001) ‘Adaptive mesh movement: The MMPDE approach and its applications’, J. Comput. Appl. Math. 128, 383398.CrossRefGoogle Scholar
Huang, W. and Sloan, D. (1994), ‘A simple adaptive grid method in two dimensions’, SIAM J. Sci. Comput. 15, 776797.CrossRefGoogle Scholar
Huang, W. and Sun, W. (2003), ‘Variational mesh adaption II: Error estimates and monitor functions’, J. Comput. Phys. 184, 619648.CrossRefGoogle Scholar
Huang, W. and Zhan, X. (2004), Adaptive moving mesh modeling for two dimensional groundwater flow and transport, in Recent Advances in Adaptive Computation, Vol. 383 of Contemporary Mathematics, AMS, pp. 283296.Google Scholar
Huang, W., Ren, Y., and Russell, R. D. (1994), ‘Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle’, SIAM J. Numer. Anal. 31, 709730.CrossRefGoogle Scholar
Huang, W., Zheng, L. and Zhan, X. (2002), ‘Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts’, Internat. J. Numer. Meth. Engng 54, 15791603.CrossRefGoogle Scholar
Huang, W., Ma, J. and Russell, R. D. (2008), ‘A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations’, J. Comput. Phys. 227, 65326552.CrossRefGoogle Scholar
Huang, W., Kamenski, L. and Lang, J. (2009), Anisotropic mesh adaptation based upon a posteriori error estimates. Submitted.CrossRefGoogle Scholar
Hyman, J. M. and Larrouturou, B. (1986), Dynamic rezone methods for partial differential equations in one space dimension. Technical Report LA-UR-86-1678, Los Alamos National laboratory, Los Alamos, NM.Google Scholar
Hyman, J. M. and Larrouturou, B. (1989), ‘Dynamic rezone methods for partial differential equations in one space dimension’, Appl. Numer. Math. 5, 435450.CrossRefGoogle Scholar
Jacquotte, O.-P. (1988), ‘A mechanical model for a new grid generation method in computational fluid dynamics’, Comput. Methods Appl. Mech. Engrg 66, 323338.CrossRefGoogle Scholar
Jacquotte, O.-P. and Coussement, G. (1992), ‘Structured mesh adaption: Space accuracy and interpolation methods’, Comput. Methods Appl. Mech. Engrg 101, 397432.CrossRefGoogle Scholar
Johnson, C. (1987), Numerical Solution of Partial differential Equations by the Finite Element Method, Cambridge University Press.Google Scholar
Kaijser, T. (1998), ‘Computing the Kantorovich distance for images’, J. Math. Imaging Vision 9, 173191.CrossRefGoogle Scholar
Kautsky, J. and Nichols, N. K. (1980), ‘Equidistributing meshes with constraints’, SIAM J. Sci. Statist. Comput. 1, 499511.CrossRefGoogle Scholar
Kautsky, J. and Nichols, N. K. (1982), ‘Smooth regrading of discretized data’, SIAM J. Sci. Statist. Comput. 3, 145159.CrossRefGoogle Scholar
Knupp, P. M. (1995), ‘Mesh generation using vector fields’, J. Comput. Phys. 119, 142148.CrossRefGoogle Scholar
Knupp, P. M. (1996), ‘Jacobian-weighted elliptic grid generation’, SIAM J. Sci. Comput. 17, 14751490.CrossRefGoogle Scholar
Knupp, P. M. (2001), ‘Algebraic mesh quality metrics’, SIAM J. Sci. Comput. 23, 193218.CrossRefGoogle Scholar
Knupp, P. and Robidoux, N. (2000), ‘A framework for variational grid generation: Conditioning the Jacobian matrix with matrix norms’, SIAM J. Sci. Comput. 21, 20292047.CrossRefGoogle Scholar
Knupp, P. and Steinberg, S. (1994), Fundamentals of Grid Generation, CRC Press, Boca Raton.Google Scholar
Knupp, P. M., Margolin, L. and Shashkov, M. (2002), ‘Reference Jacobian optimization-based rezoning strategies for arbitrary Lagrangian Eulerian methods’, J. Comput. Phys. 176, 93128.CrossRefGoogle Scholar
Kopteva, N. (2007), Convergence theory of moving grid methods, in Adaptive Computations: Theory and Algorithms (Tang, T. and Xu, J., eds), Science Press, Beijing, pp. 159210.Google Scholar
Kopteva, N. and Stynes, M. (2001), ‘A robust adaptive method for a quasilinear one-dimensional convection–diffusion problem’, SIAM J. Numer. Anal. 39, 14461467.CrossRefGoogle Scholar
Kozlov, R. (2000), Symmetry applications to difference and differential-difference equations. PhD Thesis, Institut for matematiske fag, NTNU, Trondheim.Google Scholar
Lang, J., Cao, W., Huang, W. and Russell, R. D. (2003), ‘A two-dimensional moving finite element method with local refinement based on a posteriori error estimates’, Appl. Numer. Math. 46, 7594.CrossRefGoogle Scholar
Lapenta, G. and Chacón, L. (2006), ‘Cost-effectiveness of fully implicit moving mesh adaptation: A practical investigation in 1D’, J. Comput. Phys. 219, 86103.CrossRefGoogle Scholar
LeVeque, R. J. (1990), Numerical Methods for Conservation Laws, Birkhäuser.CrossRefGoogle Scholar
Li, R., Tang, T., and Zhang, P.-W. (2002), ‘A moving mesh finite element algorithm for singular problems in two and three space dimensions’, J. Comput. Phys. 177, 365393.CrossRefGoogle Scholar
Li, S. T. and Petzold, L. R. (1997), ‘Moving mesh methods with upwinding schemes for time dependent PDEs’, J. Comput Phys. 131, 368377.CrossRefGoogle Scholar
Li, S. T., Petzold, L. R. and Ren, Y. (1998), ‘Stability of moving mesh systems of partial differential equations’, SIAM J. Sci. Comput. 20, 719738.CrossRefGoogle Scholar
Liao, G. and Anderson, D. (1992), ‘A new approach to grid generation’, Appl. Anal. 44, 285297.CrossRefGoogle Scholar
Liao, G. and Xue, J. (2006), ‘Moving meshes by the deformation method’, J. Comput. Appl. Math. 195, 8392.CrossRefGoogle Scholar
Liseikin, V. D. (1999), Grid Generation Methods, Springer, Berlin.CrossRefGoogle Scholar
Liu, A. and Joe, B. (1994), ‘Relationship between tetrahedron quality measures’, BIT 34, 268287.CrossRefGoogle Scholar
Mackenzie, J. (1999), ‘Uniform convergence analysis of an upwind finite-difference approximation of a convection–diffusion boundary value problem on an adaptive grid’, IMA J. Numer. Anal. 19, 233249.CrossRefGoogle Scholar
Mackenzie, J. A. and Mekwi, W. R. (2007 a), On the use of moving mesh methods to solve PDEs, in Adaptive Computations: Theory and Algorithms (Tang, T. and Xu, J., eds), Science Press, Beijing, pp. 242278.Google Scholar
Mackenzie, J. A. and Mekwi, W. R. (2007 b), ‘An analysis of stability and convergence of a finite-difference discretization of a model parabolic PDE in 1D using a moving mesh’, IMA J. Numer. Anal. 27, 507528.CrossRefGoogle Scholar
Mackenzie, J. A. and Robertson, M. L. (2002), ‘A moving mesh method for the solution of the one-dimensional phase-field equations’, J. Comput. Phys. 181, 526544.CrossRefGoogle Scholar
McLachlan, R. I. (1994), ‘Symplectic integration of Hamiltonian wave equations’, Numer. Math. 66, 465492.CrossRefGoogle Scholar
Marquina, A. (1994), ‘Local piecewise hyperbolic resolution of numerical fluxes for nonlinear scalar conservation laws’, SIAM J. Sci. Comput. 15, 894904.CrossRefGoogle Scholar
Miller, C. T., Gleyzer, S. N. and Imhoff, P. T. (1998), Numerical modeling of NAPL dissolution fingering in porous media, in Physical Nonequilibrium in Soils: Modeling and Application (Selim, H. M. and Ma, L., eds), Ann Arbor Press.Google Scholar
Miller, K. (1981), ‘Moving finite elements II’, SIAM J. Numer. Anal. 18, 10331057.CrossRefGoogle Scholar
Miller, K. and Miller, R. N. (1981), ‘Moving finite elements I’, SIAM J. Numer. Anal. 18, 10191032.CrossRefGoogle Scholar
Moore, P. K. and Flaherty, J. E. (1992), ‘Adaptive local overlapping grid methods for parabolic system in two space dimensions’, J. Comput. Phys. 98, 5463.CrossRefGoogle Scholar
Moser, J. (1965), ‘On the volume elements of a manifold’, Trans. Amer. Math. Soc. 120, 286294.CrossRefGoogle Scholar
Mulholland, L. S., Huang, W. and Sloan, D. M. (1998), ‘Pseudospectral solution of near-singular problems using numerical coordinate transformations based on adaptivity’, SIAM J. Sci. Comput. 19, 12611298.CrossRefGoogle Scholar
Nakamura, N. (1994), ‘Nonlinear equilibriation of two-dimensional Eady waves’, Simulations with viscous geostrophic momentum equations’, J. Atmos. Sci. 51, 10231035.2.0.CO;2>CrossRefGoogle Scholar
Oliker, V. I. and Prussner, L. D. (1988), ‘On the numerical solution of the equation (∂2z/∂x 2)(∂2z/∂y 2) − ((∂2z/∂xy))2 = f and its discretizations I’, Numer. Math. 54, 271293.CrossRefGoogle Scholar
Olver, P. J. (1986), Applications of Lie Groups to differential Equations, Springer, New York.CrossRefGoogle Scholar
Petzold, L. R. (1982), A description of DASSL: A differential/algebraic system solver. Technical report SAND82-8637, Sandia National Labs, Livermore, CA.Google Scholar
Petzold, L. R. (1987), ‘Observations on an adaptive moving grid method for one-dimensional systems for partial differential equations’, Appl. Numer. Math. 3, 347360.CrossRefGoogle Scholar
Pryce, J. (1989), ‘On the convergence of iterated remeshing’, IMA J. Numer. Anal. 9, 315335.CrossRefGoogle Scholar
Qiu, Y. and Sloan, D. M. (1998), ‘Numerical solution of Fisher's equation using a moving mesh method’, J. Comput. Phys. 146, 726746.CrossRefGoogle Scholar
Qiu, Y. and Sloan, D. M. (1999), ‘Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid’, J. Comput. Appl. Math. 101, 125.CrossRefGoogle Scholar
Qiu, Y., Sloan, D. M. and Tang, T. (2000), ‘Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: Analysis of convergence’, J. Comput. Appl. Math. 116, 121143.CrossRefGoogle Scholar
Rachev, S. T. and Rüschendorf, L. (1998), Mass Transportation Problems I: Theory, Probability and its Applications, Springer, New York.Google Scholar
Ren, W. and Wang, X. (2000), ‘An iterative grid redistribution method for singular problems in multiple dimensions’, J. Comput. Phys. 159, 246273.CrossRefGoogle Scholar
Reshetnyak, Y. G. (1989), Space Mappings with Bounded Distortion, Vol. 73 of Translations of Mathematical Monographs, AMS, Providence, RI.CrossRefGoogle Scholar
Russell, R. D., Williams, J. F., and Xu, X. (2007), ‘MOVCOL4: A moving mesh code for fourth-order time-dependent partial differential equations’, SIAM J. Sci. Comput. 29, 197220CrossRefGoogle Scholar
Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P. and Mikhailov, A. P. (1995), Blow-up in Quasilinear Parabolic Equations, Vol. 19 of De Gruyter Expositions in Mathematics, Walter de Gruyter.CrossRefGoogle Scholar
Sapiro, G. (2003), Introduction to partial differential equations and variational formulations in image processing, in Foundations of Computational Mathematics (Cucker, F., ed.), Vol. 1, pp. 383461.Google Scholar
Saucez, P., Vouwer, A. Vande and Zegeling, P. A. (2005), ‘Adaptive method of lines solutions for the extended fifth order Korteveg–De Vries equation’, J. Comput. Math. 183, 343357.CrossRefGoogle Scholar
Semper, B. and Liao, G. (1995), ‘A moving grid finite-element method using grid deformation’, Numer. Methods in PDEs 11, 603615.CrossRefGoogle Scholar
Sewell, M. J. (1978), ‘On Legendre transformations and umbilic catastrophes’, Math. Proc. Camb. Phil. Soc. 83, 273288.CrossRefGoogle Scholar
Sewell, M. J. (2002), Some applications of transformation theory in mechanics, in Large Scale Atmosphere–Ocean Dynamics, Vol. II (Norbury, J. and Roulstone, I., eds), Cambridge University Press, pp. 143223.Google Scholar
Shewchuk, R. (2002), Constrained Delaunay tetrahedralizations and provably good boundary recovery, in IMR 2002, Sandia National Laboratories, pp. 193204.Google Scholar
Shilov, G. E. and Gurevich, B. L. (1978), Integral, Measure and Derivative: A Unified Approach, Dover.Google Scholar
Smith, J. H. (1996), Analysis of moving mesh methods for dissipative partial differential equations. PhD Thesis, Department of Computer Science, Stanford University.Google Scholar
Stockie, J., Mackenzie, J. A., and Russell, R. D. (2000), ‘A moving mesh method for one-dimensional hyperbolic conservation laws’, SIAM J. Sci. Comput. 22, 17911813.CrossRefGoogle Scholar
Sulem, C. and Sulem, P. L. (1999), The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer.Google Scholar
Sulman, M. H. M. (2008) Optimal mass transport for adaptivity and image registration. PhD Thesis, Simon Fraser University.Google Scholar
Tan, Z. (2007), ‘Adaptive moving mesh methods for two-dimensional resistive magneto-hydrodynamic PDE models’, Computers and Fluids 36, 758771.CrossRefGoogle Scholar
Tan, Z., Lim, K. M. and Khoo, B. C. (2007), ‘An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model’, J. Comput. Phys. 225, 11371158.CrossRefGoogle Scholar
Tang, H. Z. and Tang, T. (2003), ‘Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws’, SIAM J. Numer. Anal. 41, 487515.CrossRefGoogle Scholar
Tang, T. (2005), Moving mesh methods for computational fluid dynamics, in Recent Advances in Adaptive Computations, Vol. 383 of Contemporary Mathematics, AMS, pp. 141173.CrossRefGoogle Scholar
Tang, T. and Xu, J., eds (2007), Adaptive Computations: Theory and Algorithms, Science Press, Beijing.Google Scholar
Tee, T. W. and Trefethen, L. N. (2006), ‘A rational spectral collocation method with adaptively transformed Chebyshev grid points’, SIAM J. Sci. Comput. 28, 17981811.CrossRefGoogle Scholar
Thompson, J. F. (1985), ‘A survey of dynamically-adaptive grids in the numerical solution of partial differential equations’, Appl. Numer. Math. 1, 327.CrossRefGoogle Scholar
Thompson, J. F. and Weatherill, N. P. (1992), ‘Structured and unstructured grid generation’, Critical Reviews Biomed. Eng. 20, 73120.Google ScholarPubMed
Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W. (1982), ‘Boundary-fitted coordinate systems for numerical solution of partial differential equations: A review’, J. Comput. Phys. 47, 1108.CrossRefGoogle Scholar
Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W. (1985), Numerical Grid Generation, North-Holland.Google Scholar
Touringy, Y. and Hülseman, F. (1998), ‘A new moving mesh algorithm for the finite element solution of variational problems’, SIAM J. Numer. Anal. 35, 14161438.Google Scholar
Veldman, A. E. P. and Rinzema, K. (1992), ‘Playing with nonuniform grids’, J. Engrg Math. 26, 119130.CrossRefGoogle Scholar
Verwer, J. G., Blom, J. G., Furzeland, R. M. and Zegeling, P. A. (1989), A moving-grid method for one-dimensional PDEs based on the method of lines, in Adaptive Methods for Partial differential Equations (Flaherty, J. E., Paslow, P. J., Shepard, M. S. and Vasilakis, J. D., eds), SIAM, Philadelphia, pp. 160175.Google Scholar
Villani, C. (2003), Topics in Optimal Transportation, Vol. 58 of Graduate Studies in Mathematics, AMS.CrossRefGoogle Scholar
Walsh, E., Budd, C. J. and Williams, J. F. (2009), The PMA method for grid generation applied to the Eady problem in meteorology. University of Bath report.Google Scholar
Wang, L.-L. and Shen, J. (2005), ‘Error analysis for mapped Jacobi spectral methods’, J. Sci. Comput. 24, 183218.CrossRefGoogle Scholar
Wathen, A. J. and Baines, M. J. (1985), ‘On the structure of the moving finite-element equations’, IMA J. Numer. Anal. 5, 161182.CrossRefGoogle Scholar
Winslow, A. M. (1967), ‘Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh’, J. Comput. Phys. 2, 149172.Google Scholar
Winslow, A. M. (1981), Adaptive mesh rezoning by the equipotential method. Technical report UCID-19062, Lawrence Livermore Lab.CrossRefGoogle Scholar
Xu, X., Huang, W.-H., Russell, R. D. and Williams, J. F. (2009), Convergence of de Boor's algorithm for generation of equidistributing meshes. Submitted.Google Scholar
Yanenko, N. N., Kroshko, E. A., Liseikin, V. V., Fomin, V. M., Shapeev, V. P. and Shitov, Y. A. (1976), Methods for the Construction of Moving Grids for Problems of Fluid Dynamics with Big Deformations, Vol. 59 of Lecture Notes in Physics, Springer.CrossRefGoogle Scholar
Zegeling, P. A. (1993), Moving-grid methods for time-dependent partial differential equations. CWI Tract 94.Google Scholar
Zegeling, P. A. (2005), ‘On resistive MHD models with adaptive moving meshes’, J. Sci. Comput. 24, 263284.CrossRefGoogle Scholar
Zegeling, P. A. (2007), Theory and application of adaptive moving grid methods, in Adaptive Computations: Theory and Algorithms, Science Press, Beijing, pp. 279332.Google Scholar
Zegeling, P. A. and Kok, H. P. (2004), ‘Adaptive moving mesh computations for reaction–diffusion systems’, J. Comput. Appl. Math. 168, 519528.CrossRefGoogle Scholar
Zhang, Z.-R and Tang, T. (2002), ‘An adaptive mesh redistribution algorithm for convection-dominated problems’, Comm. Pure Appl. Anal. 1, 341357CrossRefGoogle Scholar
Zitova, B. and Flusser, J. (2003), ‘Image registration methods: A survey’, Image and Vision Comput. 21, 9771000.CrossRefGoogle Scholar
Zlamal, M. (1968), ‘On the finite element method’, Numer. Math. 12, 394409.CrossRefGoogle Scholar