Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper discusses the identification problems of Hammerstein controlled autoregressive autoregressive (CARAR) systems using the maximum likelihood principle and Newton optimization method. A Newton recursive algorithm and a Newton iterative algorithm using the maximum likelihood principle are presented. The simulation results show that the proposed algorithms can effectively estimate the parameters of the Hammerstein CARAR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kolodziej, R.K., Joseph Mook, D.: Model determination for nonlinear state-based system identification. Nonlinear Dyn. 63(4), 735–753 (2011)

    Article  Google Scholar 

  2. Hu, P.P., Ding, F.: Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dyn. 73(1–2), 583–592 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, J., Zhang, Y., Ding, R.F.: Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model. Nonlinear Dyn. 72(4), 865–871 (2013)

    Article  MathSciNet  Google Scholar 

  4. Sun, J.L., Liu, X.G.: A novel APSO-aided maximum likelihood identification method for Hammerstein systems. Nonlinear Dyn. 73(1–2), 449–462 (2013)

    Article  Google Scholar 

  5. Vörös, J.: Modeling and identification of systems with backlash. Automatica 46(2), 369–374 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Vörös, J.: Recursive identification of systems with noninvertible output nonlinearities. Informatica 21(1), 139–148 (2010)

    MATH  MathSciNet  Google Scholar 

  7. Ding, F.: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Model. 37(4), 1694–1704 (2013)

    Article  MathSciNet  Google Scholar 

  8. Vörös, J.: Iterative algorithm for parameter identification of Hammerstein systems with two-Segment nonlinearities. IEEE Trans. Autom. Control 44(11), 2145–2149 (1999)

    Article  MATH  Google Scholar 

  9. Wang, D.Q., Chu, Y.Y., Yang, G.W., et al.: Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math. Comput. Model. 52(1–2), 309–317 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ding, F., Liu, X.G., Chu, J.: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 7(2), 176–184 (2013)

    Article  MathSciNet  Google Scholar 

  11. Zhang, Y., Cui, G.M.: Bias compensation methods for stochastic systems with colored noise. Appl. Math. Model. 35(4), 1709–1716 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ding, F.: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl. Math. Model. 37(7), 4798–4808 (2013)

    Article  MathSciNet  Google Scholar 

  13. Ding, F.: Decomposition based fast least squares algorithm for output error systems. Signal Process. 93(5), 1235–1242 (2013)

    Article  Google Scholar 

  14. Ding, F., Liu, Y.J., Bao, B.: Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 226(1), 43–55 (2012)

    Article  Google Scholar 

  15. Shi, Y., Fang, H.Z.: Kalman filter-based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538–551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ding, J., Liu, Y.J., et al.: Iterative solutions to matrix equations of form A i XB i =F i . Comput. Math. Appl. 59(11), 3500–3507 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dehghan, M., Hajarian, M.: Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations. Appl. Math. Model. 35(7), 3285–3300 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shi, J., Liu, X.G.: Melt index prediction by weighted least squares support vector machines. J. Appl. Polym. Sci. 101(1), 285–289 (2006)

    Article  Google Scholar 

  19. Jiang, H.Q., Yan, Z.B., Liu, X.G.: Melt index prediction using optimized least squares support vector machines based on hybrid particle swarm optimization algorithm. Neurocomputing 119, 469–477 (2013)

    Article  Google Scholar 

  20. Zhang, M., Liu, X.G.: Melt index prediction by fuzzy functions and weighted least squares support vector machines optimized by particle swarm optimization. Chem. Eng. Technol. 36(9), 1577–1584 (2013)

    Article  Google Scholar 

  21. Liu, X.G., Lu, J.: Least squares based iterative identification for a class of multirate systems. Automatica 46(3), 549–554 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, D.Q.: Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648–1657 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ding, F.: Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7(1), 68–79 (2013)

    Article  MathSciNet  Google Scholar 

  24. Liu, Y.J., Wang, D.Q., et al.: Least squares based iterative algorithms for identifying box—Jenkins models with finite measurement data. Digit. Signal Process. 20(5), 1458–1467 (2010)

    Article  Google Scholar 

  25. Ding, F., Liu, X.P., Liu, G.: Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit. Signal Process. 20(3), 664–677 (2010)

    Article  Google Scholar 

  26. Li, J.H., Ding, R.F., Yang, Y.: Iterative parameter identification methods for nonlinear functions. Appl. Math. Model. 36(6), 2739–2750 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, J.H., Ding, R.: Parameter estimation methods for nonlinear systems. Appl. Math. Comput. 219(9), 4278–4287 (2013)

    Article  MathSciNet  Google Scholar 

  28. Hagenblad, A., Ljung, L., Wills, A.: Maximum likelihood identification of Wiener models. Automatica 44(11), 2697–2705 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vanbeylen, L., Pintelon, R., Schoukens, J.: Blind maximum-likelihood identification of Wiener systems. IEEE Trans. Signal Process. 57(8), 3017–3029 (2009)

    Article  MathSciNet  Google Scholar 

  30. Wang, W., Ding, F., Dai, J.Y.: Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Model. 36(5), 1842–1853 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schön, T.B., Wills, A., Ninness, B.: System identification of nonlinear state-space models. Automatica 47(1), 39–49 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pence, B.L., Fathy, H.K., Stein, J.L.: Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory. Automatica 47(11), 2420–2424 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Li, J.H., Ding, F.: Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique. Comput. Math. Appl. 62(11), 4170–4177 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, J.H., Ding, F., Yang, G.W.: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Model. 55(3–4), 442–450 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vanbeylen, L., Pintelon, R., Schoukens, J.: Blind maximum likelihood identification of Hammerstein systems. Automatica 44(12), 3139–3146 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vanbeylen, L., Pintelon, R., Schoukens, J.: Blind maximum-likelihood identification of Wiener systems. IEEE Trans. Signal Process. 57(8), 3017–3029 (2009)

    Article  MathSciNet  Google Scholar 

  37. Dehghan, M., Hajarian, M.: Fourth-order variants of Newton’s method without second derivatives for solving non-linear equations. Eng. Comput. 29(4), 356–365 (2012)

    Article  Google Scholar 

  38. Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)

    Article  Google Scholar 

  39. Li, J.H.: Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91–96 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ljung, L., Söerström, T.: Theory and Practice of Recursive Identification. MIT Press, Cambridge (1983)

    MATH  Google Scholar 

  41. Ding, F., Ma, J.X., Xiao, Y.S.: Newton iterative identification for a class of output nonlinear systems with moving average noises. Nonlinear Dyn. 74(1–2), 21–30 (2013)

    Article  Google Scholar 

  42. Wang, Z.Y., Shen, Y.X., Ji, Z.C., Ding, R.: Filtering based recursive least squares algorithm for Hammerstein FIR-MA systems. Nonlinear Dyn. 73(1–2), 1045–1054 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61273194, 61305031, 51307089), the Natural Science Foundation for Colleges and Universities of Jiangsu Province (12KJA51002), the Nantong Science and Technology Project (BK2012060), the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Ding, F. & Hua, L. Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems. Nonlinear Dyn 75, 235–245 (2014). https://doi.org/10.1007/s11071-013-1061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1061-y

Keywords

Navigation