Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A family of Steffensen type methods with seventh-order convergence

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, based on some known fourth-order Steffensen type methods, we present a family of three-step seventh-order Steffensen type iterative methods for solving nonlinear equations and nonlinear systems. For nonlinear systems, a development of the inverse first-order divided difference operator for multivariable function is applied to prove the order of convergence of the new methods. Numerical experiments with comparison to some existing methods are provided to support the underlying theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  2. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, New Jersey (1964)

    MATH  Google Scholar 

  3. Liu, Z., Zheng, Q., Zhao, P.: A variant of Steffensen’s method of fourth-order convergence and its applications. Appl. Math. Comput. 2146, 1978–1983 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ren, H., Wu, Q., Bi, W.: A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 209, 206–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cordero, A., Hueso, J., Matrinez, E., et al.: Steffensen type methods for solving nonlinear equations. J. Comput. Appl. Math. 236, 3058–3064 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zheng, Q., Zhao, P., Huang, F.: A family of fourth-order Steffensen-type methods with the applications on solving nonlinear ODEs. Appl. Math. Comput. 217, 8196–8203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Petković, M.S., Ilić, S., Džunić, J.: Derivative free two-point methods with and without memory for solving nonlinear equations. Appl. Math. Comput. 217, 1887–1895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gautschi, W.: Numerical Analysis: An Introduction. Birkhãuser, Boston (1997)

    MATH  Google Scholar 

  9. Grau-Sánchez, M., Grau, A., Noguera, M.: Frozen divided difference scheme for solving systems of nonlinears. J. Comput. Appl. Math. 235, 1739–1743 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grau-Sánchez, M., Grau, A., Noguera, M.: Ostrowski type methods for solving systems of nonlinears. Appl. Math. Comput. 218, 2377–2385 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numerical Algorithms 55, 87–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Efficient high-order methods based on golden ratio for nonlinear systems. Appl. Math. Comput. 217, 4548–4556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bi, W., Ren, H., Wu, Q.: New family of seventh-order methods for nonlinear equations. Appl. Math. Comput. 203, 408–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, T. A family of Steffensen type methods with seventh-order convergence. Numer Algor 62, 429–444 (2013). https://doi.org/10.1007/s11075-012-9597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9597-3

Keywords

Mathematics Subject Classfications (2010)

Navigation