Abstract
Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Busquets, D.: A Multiagent Approach to Qualitative Navigation in Robotics. PhD Dissertation, Universitat Politècnica de Catalunya (2003)
Busquets, D., Sierra, C., de Mantaras, R.L.: A multiagent approach to qualitative landmark-based navigation. Auton. Robots 15(2), 129–154 (2003)
Carwright, B.A., Collet, T.S.: Landmark learning in bees: experiments and models. J. Comp. Physiol. 151, 521–543 (1983)
Chaudhari, P.: Localization using Average Landmark Vector in the presence of clutter. In: Nature & Biologically Inspired Computing, 2009. World Congress on NaBIC 2009, pp. 1592–1595. IEEE (2010)
Edelman, S., Intrator, N., Poggio, T.: Complex cells and object recognition, unpublished manuscript: http://kybele.psych.cornell.edu/∼edelman/archive.html, University of Cornell (1997)
Franz, M., Stürzl, W., Hübner, W., Mallot, H.: A robot system for biomimetic navigation—from snapshots to metric embeddings of view graphs. robotics and cognitive approaches to spatial mapping, pp. 297–314 (2008)
Franz, M.O., Schölkopf, B., Mallot, H.A.,, Bülthoff, H.H.: Where did I take that snapshot? Scene-based homing by image matching. Biol. Cybern. 79, 191–202 (1998)
Goedemé, T., Nuttin, M., Tuytelaars, T., Van Gool, L.: Omnidirectional vision based topological navigation. Int. J. Comput. Vis. 74(3), 219–236 (2007)
Goldhoorn, A.: Solving Ambiguity in Global Localization of Autonomous Robots. Master’s thesis, University of Groningen (2008)
Goldhoorn, A., Ramisa, A., de Mantaras, R.L., Toledo, R.: Robot Homing Simulations Using the Average Landmark Vector Method. Tech. Rep. RR-IIIA-2007-03, IIIA-CSIC, Bellaterra (2007)
Goldhoorn, A., Ramisa, A., de Mantaras, R.L., Toledo, R.: Using the average landmark vector method for robot homing. In: 19th International Conference of the ACIA, IOS Press, Frontiers in Artificial Intelligence and Applications, vol. 163, pp. 331–338 (2007)
Hafner, V., Möller, R.: Learning of visual navigation strategies. In: European Workshop on Learning Robots (EWLR). Prague (2001)
Hafner, V.V.: Adaptive homing: robotic exploration tours. Adapt. Behav. 9(3/4), 131–141 (2001)
Hong, J., Tan, X., Pinette, B., Weiss, R., Riseman, E.: Image-based homing. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 620–625 (1991)
Labrosse, F.: Short and long-range visual navigation using warped panoramic images. Robot. Auton. Syst. 55(9), 675–684 (2007)
Lambrinos, D., Möller, R., Pfeifer, R., Wehner, R.: Landmark navigation without snapshots: the average landmark vector model. In: Elsner, N., Wehner, R. (eds.) Proc 26th Göttingen Neurobiology Conference. Thieme-Verlag (1998)
Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robot. Auton. Syst. 30(1–2), 39–64 (2000)
Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image Vision Comput. 15(6), 415–434 (1997)
López-Nicolis, G., Guerrero, J., Sagüés, C.: Multiple homographies with omnidirectional vision for robot homing. Robot. Auton. Syst. 58(6), 773–783 (2010)
Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV ’99: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE Computer Society, Washington (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proceedings of the British Machine Vision Conference, vol. 1, pp. 384–393. BMVA, London (2002)
McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 39–46. ACM Press, New York (1995)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(30), 43–72 (2005)
Möller, R.: Insect visual homing strategies in a robot with analog processing. Biol. Cybern. (Special issue: Navigation in Biological and Artificial Systems) 83, 231–243 (2000)
Möller, R.: Local visual homing by warping of two-dimensional images. Robot. Auton. Syst. 57(1), 87–101 (2009)
Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. In: Webb, B., Consi, T.R. (eds.) Biorobotics. Methods and Applications, pp 37–66. AAAI Press/MIT Press (2001)
Möller, R., Vardy, A., Kreft, S., Ruwisch, S.: Visual homing in environments with anisotropic landmark distribution. Auton. Robots 23(3), 231–245 (2007)
Möller, R., Krzykawski, M., Gerstmayr, L.: Three 2D-warping schemes for visual robot navigation. Autonomous Robots, pp. 1–39 (2009)
Murphy-Chutorian, E., Trivedi, M.: N-tree disjoint-set forests for maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference (2006)
Pons, J., Hübner, W., Dahmen, H., Mallot, H.: Vision-based robot homing in dynamic environments. In: K. Schilling, (ed.) 13th IASTED International Conference on Robotics and Applications, Citeseer, pp. 293–298 (2007)
Ramisa, A.: Qualitative Navigation Using Panoramas. Master’s thesis, Universitat Autònoma de Barcelona (2006)
Ramisa, A., Tapus, A., Aldavert, D., Toledo, R., Lopez de Mantaras, R.: Robust vision-based robot localization using combinations of local feature region detectors. Auton. Robots 27(4), 373–385 (2009)
Shum, H., Szeliski, R.: Panoramic Image Mosaics. Tech. Rep. MSR-TR-97-23, Microsoft Research (1997)
Szeliski, R., Shum, H.Y.: Creating full view panoramic image mosaics and environment maps. In: SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, vol. 31, pp. 251–258. ACM Press/Addison-Wesley Publishing Co., New York (1997)
Usher, K., Ridley, P., Corke, P.: Visual servoing of a car-like vehicle-an application of omnidirectional vision. In: Robotics and Automation, 2003. Proceedings. IEEE International Conference on ICRA’03, vol. 3 (2003)
Vardy, A.: Biologically Plausible Methods for Robot Visual Homing. PhD Dissertation, Carleton University (2005)
Vinyals, M., Ramisa, A., Toledo, R.: An Evaluation of an Object Recognition Schema Using Multiple Region Detectors. Front. Artif. Intell. Appl. 163, 213 (2007)
Wehner, R.: Spatial organization of foraging behavior in individually searching desert ants, cataglyphis (Sahara Desert) and ocymyrmex (Namib Desert). Experientia, Suppl. 54, 15–42 (1987)
Wehner, R.: The polarization-vision project: championing organismic biology. Prog. Zool (Fortschr Zool) 39, 103–143 (1994)
Zeil, J., Hofmann, M., Chahl, J.: Catchment areas of panoramic snapshots in outdoor scenes. JOSA-A 20(3), 450–469 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the FI grant from the Generalitat de Catalunya, the European Social Fund, the MID-CBR project grant TIN2006-15140- C03-01 and FEDER funds, the grant 2005-SGR-00093, the MIPRCV Consolider Imagennio 2010 and the Marco Polo fund from the University of Groningen.
Rights and permissions
About this article
Cite this article
Ramisa, A., Goldhoorn, A., Aldavert, D. et al. Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas. J Intell Robot Syst 64, 625–649 (2011). https://doi.org/10.1007/s10846-011-9552-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-011-9552-x