Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Busquets, D.: A Multiagent Approach to Qualitative Navigation in Robotics. PhD Dissertation, Universitat Politècnica de Catalunya (2003)

  2. Busquets, D., Sierra, C., de Mantaras, R.L.: A multiagent approach to qualitative landmark-based navigation. Auton. Robots 15(2), 129–154 (2003)

    Article  Google Scholar 

  3. Carwright, B.A., Collet, T.S.: Landmark learning in bees: experiments and models. J. Comp. Physiol. 151, 521–543 (1983)

    Article  Google Scholar 

  4. Chaudhari, P.: Localization using Average Landmark Vector in the presence of clutter. In: Nature & Biologically Inspired Computing, 2009. World Congress on NaBIC 2009, pp. 1592–1595. IEEE (2010)

  5. Edelman, S., Intrator, N., Poggio, T.: Complex cells and object recognition, unpublished manuscript: http://kybele.psych.cornell.edu/∼edelman/archive.html, University of Cornell (1997)

  6. Franz, M., Stürzl, W., Hübner, W., Mallot, H.: A robot system for biomimetic navigation—from snapshots to metric embeddings of view graphs. robotics and cognitive approaches to spatial mapping, pp. 297–314 (2008)

  7. Franz, M.O., Schölkopf, B., Mallot, H.A.,, Bülthoff, H.H.: Where did I take that snapshot? Scene-based homing by image matching. Biol. Cybern. 79, 191–202 (1998)

    Article  MATH  Google Scholar 

  8. Goedemé, T., Nuttin, M., Tuytelaars, T., Van Gool, L.: Omnidirectional vision based topological navigation. Int. J. Comput. Vis. 74(3), 219–236 (2007)

    Article  Google Scholar 

  9. Goldhoorn, A.: Solving Ambiguity in Global Localization of Autonomous Robots. Master’s thesis, University of Groningen (2008)

  10. Goldhoorn, A., Ramisa, A., de Mantaras, R.L., Toledo, R.: Robot Homing Simulations Using the Average Landmark Vector Method. Tech. Rep. RR-IIIA-2007-03, IIIA-CSIC, Bellaterra (2007)

  11. Goldhoorn, A., Ramisa, A., de Mantaras, R.L., Toledo, R.: Using the average landmark vector method for robot homing. In: 19th International Conference of the ACIA, IOS Press, Frontiers in Artificial Intelligence and Applications, vol. 163, pp. 331–338 (2007)

  12. Hafner, V., Möller, R.: Learning of visual navigation strategies. In: European Workshop on Learning Robots (EWLR). Prague (2001)

  13. Hafner, V.V.: Adaptive homing: robotic exploration tours. Adapt. Behav. 9(3/4), 131–141 (2001)

    Article  Google Scholar 

  14. Hong, J., Tan, X., Pinette, B., Weiss, R., Riseman, E.: Image-based homing. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 620–625 (1991)

  15. Labrosse, F.: Short and long-range visual navigation using warped panoramic images. Robot. Auton. Syst. 55(9), 675–684 (2007)

    Article  Google Scholar 

  16. Lambrinos, D., Möller, R., Pfeifer, R., Wehner, R.: Landmark navigation without snapshots: the average landmark vector model. In: Elsner, N., Wehner, R. (eds.) Proc 26th Göttingen Neurobiology Conference. Thieme-Verlag (1998)

  17. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robot. Auton. Syst. 30(1–2), 39–64 (2000)

    Article  Google Scholar 

  18. Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image Vision Comput. 15(6), 415–434 (1997)

    Article  Google Scholar 

  19. López-Nicolis, G., Guerrero, J., Sagüés, C.: Multiple homographies with omnidirectional vision for robot homing. Robot. Auton. Syst. 58(6), 773–783 (2010)

    Article  Google Scholar 

  20. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV ’99: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE Computer Society, Washington (1999)

    Chapter  Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  22. Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proceedings of the British Machine Vision Conference, vol. 1, pp. 384–393. BMVA, London (2002)

    Google Scholar 

  23. McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 39–46. ACM Press, New York (1995)

    Chapter  Google Scholar 

  24. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(30), 43–72 (2005)

    Article  Google Scholar 

  25. Möller, R.: Insect visual homing strategies in a robot with analog processing. Biol. Cybern. (Special issue: Navigation in Biological and Artificial Systems) 83, 231–243 (2000)

    MATH  Google Scholar 

  26. Möller, R.: Local visual homing by warping of two-dimensional images. Robot. Auton. Syst. 57(1), 87–101 (2009)

    Article  Google Scholar 

  27. Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. In: Webb, B., Consi, T.R. (eds.) Biorobotics. Methods and Applications, pp 37–66. AAAI Press/MIT Press (2001)

  28. Möller, R., Vardy, A., Kreft, S., Ruwisch, S.: Visual homing in environments with anisotropic landmark distribution. Auton. Robots 23(3), 231–245 (2007)

    Article  Google Scholar 

  29. Möller, R., Krzykawski, M., Gerstmayr, L.: Three 2D-warping schemes for visual robot navigation. Autonomous Robots, pp. 1–39 (2009)

  30. Murphy-Chutorian, E., Trivedi, M.: N-tree disjoint-set forests for maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference (2006)

  31. Pons, J., Hübner, W., Dahmen, H., Mallot, H.: Vision-based robot homing in dynamic environments. In: K. Schilling, (ed.) 13th IASTED International Conference on Robotics and Applications, Citeseer, pp. 293–298 (2007)

  32. Ramisa, A.: Qualitative Navigation Using Panoramas. Master’s thesis, Universitat Autònoma de Barcelona (2006)

  33. Ramisa, A., Tapus, A., Aldavert, D., Toledo, R., Lopez de Mantaras, R.: Robust vision-based robot localization using combinations of local feature region detectors. Auton. Robots 27(4), 373–385 (2009)

    Article  Google Scholar 

  34. Shum, H., Szeliski, R.: Panoramic Image Mosaics. Tech. Rep. MSR-TR-97-23, Microsoft Research (1997)

  35. Szeliski, R., Shum, H.Y.: Creating full view panoramic image mosaics and environment maps. In: SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, vol. 31, pp. 251–258. ACM Press/Addison-Wesley Publishing Co., New York (1997)

    Chapter  Google Scholar 

  36. Usher, K., Ridley, P., Corke, P.: Visual servoing of a car-like vehicle-an application of omnidirectional vision. In: Robotics and Automation, 2003. Proceedings. IEEE International Conference on ICRA’03, vol. 3 (2003)

  37. Vardy, A.: Biologically Plausible Methods for Robot Visual Homing. PhD Dissertation, Carleton University (2005)

  38. Vinyals, M., Ramisa, A., Toledo, R.: An Evaluation of an Object Recognition Schema Using Multiple Region Detectors. Front. Artif. Intell. Appl. 163, 213 (2007)

    Google Scholar 

  39. Wehner, R.: Spatial organization of foraging behavior in individually searching desert ants, cataglyphis (Sahara Desert) and ocymyrmex (Namib Desert). Experientia, Suppl. 54, 15–42 (1987)

    Google Scholar 

  40. Wehner, R.: The polarization-vision project: championing organismic biology. Prog. Zool (Fortschr Zool) 39, 103–143 (1994)

    Google Scholar 

  41. Zeil, J., Hofmann, M., Chahl, J.: Catchment areas of panoramic snapshots in outdoor scenes. JOSA-A 20(3), 450–469 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnau Ramisa.

Additional information

This work was partially supported by the FI grant from the Generalitat de Catalunya, the European Social Fund, the MID-CBR project grant TIN2006-15140- C03-01 and FEDER funds, the grant 2005-SGR-00093, the MIPRCV Consolider Imagennio 2010 and the Marco Polo fund from the University of Groningen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramisa, A., Goldhoorn, A., Aldavert, D. et al. Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas. J Intell Robot Syst 64, 625–649 (2011). https://doi.org/10.1007/s10846-011-9552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9552-x

Keywords

Mathematics Subject Classifications (2010)

Navigation