Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This work presents a simple synthetic route to produce WO3 nanofibers functionalized by catalytic Pt and IrO2 nanoparticles and their superior acetone and H2S sensing characteristics, demonstrating the potential use of Pt and IrO2 nanoparticles in applications as sensors of biomarkers of diabetes and halitosis, respectively, in exhaled breath. The individual WO3 fiber, calcined at 500 °C, was composed of small nanoparticles with a size distribution in the range of 30–100 nm. Networks of WO3 fibers exhibited a high surface-to-volume ratio and unique morphologies, thus facilitating efficient gas transport into the entire fiber layers. Pt (4–7 nm) and Ir (4–8 nm) nanoparticles were synthesized by polyol methods and were used as additives to decorate the surface of the WO3 fibers. After a heat treatment, those catalyst particles were partially or fully oxidized to Pt/PtOx and IrO2, respectively. To investigate the advantages of Pt-decorated WO3 fibers (Pt-WO3) and IrO2-decorated WO3 (IrO2-WO3) fibers as acetone (CH3COCH3) and H2S sensing materials, respectively, we carried out gas-sensing measurements in a highly humid atmosphere (RH 75 %) similar to that of an oral cavity. The Pt-WO3 fibers showed a high acetone response (Rair/Rgas = 8.7 at 5 ppm) at 350 °C and a superior H2S response (Rair/Rgas = 166.8 at 5 ppm) at 350 °C. Interestingly, IrO2-WO3 fibers showed no response to acetone, while the gas response to H2S exhibited temperature-insensitivity, which has never been reported in any other work. Thus, the highly selective cross-response between H2S and acetone was successfully achieved via the combination of IrO2 particles on WO3 fibers. This work demonstrates that accurate diagnosis of diabetes and halitosis by sensing exhaled breath can be realized through the use of electrospun WO3 fibers decorated with Pt and IrO2 catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.V. Ryabtsev, A.V. Shaposhnick, A.N. Lukin, E.P. Domashevskaya, Sens. Actuators B 59, 26 (1999)

    Article  Google Scholar 

  2. J.B. Yu, H. Gi Byun, M.S. So, J.S. Huh, Sens. Actuators B 108, 305 (2005)

    Article  Google Scholar 

  3. J. Rodrıguez-Fernández, J.M.L. Costa, R. Pereiro, A. Sanz-Medel, Anal. Chem. Acta 398, 23 (1999)

    Article  Google Scholar 

  4. M. Hanada, H. Koda, K. Onaga, K. Tanaka, T. Okabayashi, T. Itoh, H. Miyazaki, Anal. Chem. Acta 475, 27 (2003)

    Article  CAS  Google Scholar 

  5. J. Rodrıguez-Fernández, R. Pereiro, A. Sanz-Medel, Anal. Chem. Acta 471, 13 (2002)

    Article  Google Scholar 

  6. D. Smith, P. Spanel, A.A. Fryer, F. Hanna, G.A.A. Ferns, J. Breath Res. 5, 022001 (2011)

    Article  Google Scholar 

  7. F. Bouillaud, F. Blachier, Antioxid. Rredox. Sign. 15(2), 379 (2011)

    Article  CAS  Google Scholar 

  8. N. Alagirisamy, S.S. Hardas, S. Jayaraman, Anal. Chem. Acta 661, 97 (2010)

    Article  CAS  Google Scholar 

  9. X. Hu, Y. Masuda, T. Ohji, K. Kato, J. Am. Ceram. Soc. 92(4), 922 (2009)

    Article  CAS  Google Scholar 

  10. L. Francioso, A.M. Taurino, A. Forleo, P. Siciliano, Sens. Actuators B 130, 70 (2008)

    Article  Google Scholar 

  11. H.S. Kim, C.H. Jin, S.H. Park, C.M. Lee, J. Electroceram. Onlie First, (2012)

  12. J.Y. Park, D.E. Song, S.S. Kim, Nanotechnol. 19, 105503 (2008)

    Article  Google Scholar 

  13. Y. Dai, W. Liu, E. Formo, Y. Sun, Y. Xia, Polym. Adv. Technol. 22, 326 (2011)

    Article  CAS  Google Scholar 

  14. W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, J.C. Nino, J. Am. Ceram. Soc. 89(2), 395 (2006)

    Article  CAS  Google Scholar 

  15. I.D. Kim, E.K. Jeon, S.H. Choi, D.K. Choi, H.L. Tuller, J. Electroceram. 25, 159 (2010)

    Article  CAS  Google Scholar 

  16. J.A. Park, J. Moon, S.J. Lee, S.H. Kim, T. Zyung, H.Y. Chu, Mater. Lett. 64, 255 (2010)

    Article  CAS  Google Scholar 

  17. W.Y. Wu, J.M. Ting, P.J. Huang, Nanoscale Res. Lett. 4, 513 (2009)

    Article  CAS  Google Scholar 

  18. P.I. Gouma, K. Kalyanasundaram, A. Bishop, J. Mater. Res. 21(11), 2904 (2006)

    Article  CAS  Google Scholar 

  19. L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu, H. Song, Sens. Actuators B 147, 531 (2010)

    Article  Google Scholar 

  20. S.H. Choi, I.S. Hwang, J.H. Lee, S.G. Oha, I.D. Kim, Chem. Commun. 47, 9315 (2011)

    Article  CAS  Google Scholar 

  21. G. Wang, Y. Ji, X. Huang, X. Yang, P.I. Gouma, M. Dudley, J. Phys. Chem. B 110, 23777 (2006)

    Article  CAS  Google Scholar 

  22. K. Kanda, T. Maekawa, Sens. Actuators B 108, 97 (2005)

    Article  Google Scholar 

  23. R.S. Khadayate, J.V. Sali, P.P. Patil, Talanta 72, 1077 (2007)

    Article  CAS  Google Scholar 

  24. O. Berger, W.J. Fischer, J. Mater. Sci. Mater. Electron. 15, 463 (2004)

    Article  CAS  Google Scholar 

  25. P.I. Gouma, K. Kalyanasundaram, Appl. Phys. Lett. 93, 244102 (2008)

    Article  Google Scholar 

  26. P.M. Woodward, A.W. Sleight, J Solid State Chem. 131, 9 (1997)

    Article  CAS  Google Scholar 

  27. X. Lu, X. Liu, W. Zhang, C. Wanga, Y. Wei, J. Colloid Interface Sci. 298(2), 996 (2006)

    Article  CAS  Google Scholar 

  28. S. Piperno, M. Passacantando, S. Santucci, L. Lozzi, J. Appl. Phys. 101, 124504 (2007)

    Article  Google Scholar 

  29. K.M. Sawicka, A.K. Prasad, P.I. Gouma, Sens. Lett. 3, 31 (2005)

    Article  CAS  Google Scholar 

  30. J. Leng, X. Xu, N. Lv, H. Fan, T. Zhang, J. Colloid Interface Sci. 356, 54 (2011)

    Article  CAS  Google Scholar 

  31. T.A. Nguyena, S. Park, J.B. Kim, T.K. Kim, G.H. Seong, J. Choo, Y.S. Kim, Sens. Actuators B 160, 549 (2011)

    Article  Google Scholar 

  32. M. Righettoni, A. Tricoli, S.E. Pratsinis, Anal. Chem. 82, 3581 (2010)

    Article  CAS  Google Scholar 

  33. L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma, Chem. Mater. 20, 4794 (2008)

    Article  CAS  Google Scholar 

  34. L. Wang, X. Yun, M. Stanacevic, P.I. Gouma, AIP Conf. Proc. 1137, 206 (2009)

    Article  CAS  Google Scholar 

  35. J. Tamaki, Y. Michiba, S. Kajita, IEEJ Trans. Sens. and Micromach. 128(4), 145 (2008)

    Article  Google Scholar 

  36. Y.S. Kim, K. Lee, J. Nanosci. Nanotechnol. 9, 2453 (2009)

    Google Scholar 

  37. F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P.Y. Silvert, Nanostruct. Mater. 11(8), 1277 (1999)

    Article  CAS  Google Scholar 

  38. H. Kang, Y. Zhu, Y. Jing, X. Yang, C. Li, Colloids Surf. A: Physicochem. Eng. Aspects 356, 120 (2008)

    Article  Google Scholar 

  39. S. Koombhongse, W. Liu, D.H. Reneker, J. Polym. Sci., Part B: Polym. Phys. 39, 2598 (2001)

    Article  CAS  Google Scholar 

  40. R.S. Chen, H.M. Chang, Y.S. Huang, D.S. Tsai, S. Chattopadhyay, K.H. Chen, J. Cryst. Growth 271, 105 (2004)

    Article  CAS  Google Scholar 

  41. K.W. Park, Y.E. Sung, J. Appl. Phys. 94(11), 7276 (2003)

    Article  CAS  Google Scholar 

  42. N.V. Hullavarad, S.S. Hullavarad, IEEE Trans. Nanotechnol. 9(5), 625 (2010)

    Article  Google Scholar 

  43. D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, Appl. Phys. Lett. 69, 650 (1996)

    Article  CAS  Google Scholar 

  44. D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, Sens. Actuators B 44, 458 (1997)

    Article  Google Scholar 

  45. S. Matsusima, Y. Teraoka, N. Miura, N. Yamazoe, Jpn. J. Appl. Phys. 27(10), 1798 (1988)

    Article  Google Scholar 

  46. S. Liu, F. Zhang, H. Li, T. Chen, Y. Wang, Sens. Actuators B 162, 259 (2012)

    Article  CAS  Google Scholar 

  47. H.M. Lin, C.M. Hsu, H.Y. Yang, P.Y. Lee, C.C. Yang, Sens. Actuators B 22, 63 (1994)

    Article  Google Scholar 

  48. T. Maosong, D. Guorui, G. Dingsan, Appl. Surf. Sci. 171, 226 (2001)

    Article  CAS  Google Scholar 

  49. P.P. Sahay, J. Mater. Sci. 40, 4383 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Research, Korea and the Ministry of Science & Technology, Israel. This work was also supported by the Engineering Research Center Program from Korean National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Doo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, J., Choi, SJ., Youn, DY. et al. Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J Electroceram 29, 106–116 (2012). https://doi.org/10.1007/s10832-012-9755-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-012-9755-y

Keywords

Navigation