Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Spatial statistics for urban analysis: A review of techniques with examples

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

Traditionally, urban analysis has been quick to adopt and benefit from developments in technology (e.g., microcomputer, GIS) and techniques (e.g., statistics, mathematical programming). This has not been the case, however, with newer methods of spatial analysis — in particular, spatial statistics. Only recently has this situation started to change. This paper documents the confluence of spatial statistics and urban analysis by first reviewing developments in spatial statistics, and then presenting examples of recent applications in urban analysis. The developments reviewed fall under the rubric of global and local forms of spatial analysis, and cover three major technical issues: spatial association, spatial heterogeneity and the modifiable areal unit problem. The examples highlight the relevance and usefulness of the techniques reviewed for urban transportation and land-use applications. The paper concludes with conjectures concerning future developments at the intersection of spatial statistics and urban analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed J. and Kaysi I., 2003: Identifying urban boundaries: application of remote sensing and geographic information system technologies. Canadian Journal of Civil Engineering 30: 992–999.

    Article  Google Scholar 

  • Alonso W., 1964: Location and Land Use. Harvard University Press, Cambridge.

    Book  Google Scholar 

  • Alperovich G. and Deutsch J., 1992: Population-density gradients and urbanization measurement. Urban Studies 29: 1323–1328.

    Article  Google Scholar 

  • Alperovich G. and Deutsch J., 2002: An application of a switching regimes regression to the study of urban structure. Papers in Regional Science 81: 83–98.

    Article  Google Scholar 

  • Amrhein C.G., 1995: Searching for the elusive aggregation effect: Evidence from statistical simulations. Environment and Planning A 27: 105–119.

    Article  Google Scholar 

  • Amrhein C.G. and Flowerdew R., 1992: The effect of data aggregation on a Poisson regression-model of Canadian migration. Environment and Planning A 24: 1381–1391.

    Article  Google Scholar 

  • Anselin L. and Griffith D.A., 1988: Do spatial effects really matter in regression-analysis. Papers of the Regional Science Association 65: 11–34.

    Article  Google Scholar 

  • Anselin L., 1988: Spatial Econometrics: Methods and Models. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Anselin L., 1995: Local Indicators of Spatial Association — LISA. Geographical Analysis 27: 93–115.

    Article  Google Scholar 

  • Bailey T.C. and Gatrell A.C., 1995: Interactive Spatial Data Analysis. Addison Wesley Longman, Essex.

    Google Scholar 

  • Barredo J.I., Demicheli L., Lavalle C., Kasanko M. and McCormick N., 2004: Modelling future urban scenarios in developing countries: an application case study in Lagos, Nigeria. Environment and Planning B 31: 65–84.

    Article  Google Scholar 

  • Batty M. and Sikdar P.K., 1982a: Spatial aggregation in gravity models. 1. an information-theoretic framework. Environment and Planning A 14: 377–405.

    Article  Google Scholar 

  • Batty M. and Sikdar P.K., 1982b: Spatial aggregation in gravity models. 2. one-dimensional population-density models. Environment and Planning A 14: 525–553.

    Article  Google Scholar 

  • Batty M. and Sikdar P.K., 1982c: Spatial aggregation in gravity models. 3. two-dimensional trip distribution and location models. Environment and Planning A 14: 629–658.

    Article  Google Scholar 

  • Batty M. and Sikdar P.K., 1982d: Spatial aggregation in gravity models. 4. generalizations and large-scale applications. Environment and Planning A 14: 795–822.

    Article  Google Scholar 

  • Baumont C., Ertur C. and Le Gallo J., 2004: Spatial analysis of employment and population density: The case of the aglomeration of Dijon 1999. Geographical Analysis 36: 146–176.

    Article  Google Scholar 

  • Bender B. and Hwang H., 1985: Hedonic housing price indices and secondary employment centers. Journal of Urban Economics 17: 90–107.

    Article  Google Scholar 

  • Bennion M.W. and O’Neill W.A., 1994: Building transportation analysis zones using geographic information systems. Transportation Research Record 1429: 49–56.

    Google Scholar 

  • Bhat C. and Zhao H.M., 2002: The spatial analysis of activity stop generation. Transportation Research B 36: 557–575.

    Article  Google Scholar 

  • Bhat C.R. and Guo J., 2004: A mixed spatially correlated logit model: formulation and application to residential choice modeling. Transportation Research B 38: 147–168.

    Article  Google Scholar 

  • Black J.A., 1981: Urban Transport Planning. Croom Helm, London.

    Google Scholar 

  • Blalock H., 1964: Causal Inferences on Nonexperimental Research. University of North Carolina Press, Chapel Hill.

    Google Scholar 

  • Bolduc D., Dagenais M.G. and Gaudry M.J.I., 1989: Spatially autocorrelated errors in origin-destination models: A new specification applied to aggregate mode choice. Transportation Research B 23: 361–372.

    Article  Google Scholar 

  • Bolduc D., Laferriere R. and Santarossa G., 1992: Spatial autoregressive error-components in travel flow models. Regional Science and Urban Economics 22: 371–385.

    Article  Google Scholar 

  • Bolduc D., Laferriere R. and Santarossa G., 1995: Spatial autoregressive error components in travel flow models: an application to aggregate mode choice. In Anselin, L. and Florax, R. J.G.M. (eds), New Directions in Spatial Econometrics, pp. 96–108. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Briggs D.J., Collins S., Elliott P., Fischer P., Kingham S., Lebret E., Pryl K., VanReeuwijk H., Smallbone K. and VanderVeen A., 1997: Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science 11: 699–718.

    Article  Google Scholar 

  • Brunsdon C., Fotheringham A.S. and Charlton M., 1999: Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 39: 497–524.

    Article  Google Scholar 

  • Brunsdon C., Fotheringham A.S. and Charlton M.E., 1996: Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis 28: 281–298.

    Article  Google Scholar 

  • Ceccato V., Haining R. and Signoretta P., 2002: Exploring offence statistics in Stockholm City using spatial analysis tools. Annals of the Association of American Geographers 92: 29–51.

    Article  Google Scholar 

  • Cleveland W.S., 1979: Robust locally weighted regression and smoothing of scatterplots. Journal of the American Statistical Association 74: 823–836.

    Article  Google Scholar 

  • Cliff A.D. and Ord J.K., 1981: Spatial Processes: Models and Applications. Pion, London.

    Google Scholar 

  • Cornes R. and Sandler T., 1996: The Theory of Externalities, Public Goods, and Club Goods. 2nd Edition: Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Craglia M., Haining R. and Signoretta P., 2001: Modelling high-intensity crime areas in English cities. Urban Studies 38: 1921–1941.

    Article  Google Scholar 

  • Craglia M., Haining R. and Wiles P., 2000: A comparative evaluation of approaches to urban crime pattern analysis. Urban Studies 37: 711–729.

    Article  Google Scholar 

  • Crampton G.R., 1991: Residential density patterns in London: any role left for the exponential density gradient. Environment and Planning A 23: 1007–1024.

    Article  Google Scholar 

  • Cressie N.A.C., 1993: Statistics for Spatial Data. John Wiley & Sons, New York.

    Google Scholar 

  • Cuthbert A.L. and Anderson W.P., 2002a: An examination of urban form in Halifax-Dartmouth: alternative approaches in data. Canadian Journal of Urban Research 11: 213–237.

    Google Scholar 

  • Cuthbert A.L. and Anderson W.P., 2002b: Using spatial statistics to examine the pattern of urban land development in Halifax-Dartmouth. Professional Geographer 54: 521–532.

    Article  Google Scholar 

  • De la Barra T., 1989: Integrated Land Use and Transport Modelling. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Ding C., 1998: The GIS-based human-interactive TAZ design algorithm: examining the impacts of data aggregation on transportation-planning analysis. Environment and Planning B 25: 601–616.

    Article  Google Scholar 

  • Du G., 2001: Using GIS for analysis of urban systems. GeoJournal 52: 213–221.

    Article  Google Scholar 

  • Duncan C. and Jones K., 2000: Using multilevel models to model heterogeneity: potential and pitfalls. Geographical Analysis 32: 279–305.

    Article  Google Scholar 

  • Fingleton B., 2000: Spatial econometrics, economic geography, dynamics and equilibrium: a ‘ third way’? Environment and Planning A 32: 1481–1498.

    Article  Google Scholar 

  • Flint C., 2002: The theoretical and methodological utility of space and spatial statistics for historical studies: the Nazi Party in geographic context. Historical Methods 35: 32–42.

    Article  Google Scholar 

  • Fotheringham A.S., 1989: Scale-independent spatial analysis. In Goodchild, M. and Gopal, S. (eds), Accuracy of Spatial Databases, pp. 221–228. Taylor and Francis, London.

    Google Scholar 

  • Fotheringham A.S., 2000: GIS-based spatial modelling: a step forwards or a step backwards. In Fotheringham, A.S. and Wegener, M. (eds), Spatial Models and GIS: New Potential and New Models, pp. 21–30. Taylor and Francis, London.

    Google Scholar 

  • Fotheringham A.S. and Brunsdon C., 1999: Local forms of spatial analysis. Geographical Analysis 31: 340–358.

    Article  Google Scholar 

  • Fotheringham A.S., Brunsdon C. and Charlton M., 2000: Quantitative Geography: Perspectives on Spatial Data Analysis. Sage, London.

    Google Scholar 

  • Fotheringham A.S., Densham P.J. and Curtis A., 1995: The zone definition problem in location-allocation modeling. Geographical Analysis 27: 60–77.

    Article  Google Scholar 

  • Fotheringham A.S. and Wong D.W.S., 1991: The modifiable areal unit problem in multivariate statistical analysis. Environment and Planning A 23: 1025–1044.

    Article  Google Scholar 

  • Fujita M., Krugman P. and Venables A.J., 1999: The Spatial Economy: Cities, Regions and International Trade. MIT Press, Cambridge.

    Google Scholar 

  • Gehlke C.E. and Biehl K., 1934: Certain effects of grouping upon the size of the correlation coefficient in census tract material. Journal of the American Statistical Association 29: 169–170.

    Google Scholar 

  • Getis A. and Ord J.K., 1993: The analysis of spatial association by use of distance statistics. Geographical Analysis 25: 276–276.

    Google Scholar 

  • Goodchild M.F., 1979: Aggregation problem in location-allocation. Geographical Analysis 11: 240–255.

    Article  Google Scholar 

  • Griffith D.A., 1988: Advanced Spatial Statistics: Special Topics in the Exploration of Quantitative Spatial Data Series. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Griffith D.A., 1999: Statistical and mathematical sources of regional science theory: map pattern analysis as an example. Papers in Regional Science 78: 21–45.

    Article  Google Scholar 

  • Griffith D.A. and Layne L.J., 1999: A Casebook for Spatial Statistical Data Analysis: A Compilation of Analyses of Different Thematic Data Sets. Oxford University Press, New York.

    Google Scholar 

  • Guo J.Y. and Bhat C.R., 2004: Modifiable areal units: a problem or a matter of perception in the context of residential location choice modeling? Transportation Research Record, forthcoming.

  • Haider M. and Miller E.J., 2000: Effects of transportation infrastructure and location on residential real estate values: application of spatial autoregressive techniques. Transportation Research Record 1722: 1–8.

    Article  Google Scholar 

  • Haining R., 1990: Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Hall P., 1986: The state of cities and the state of planning. In Hutchinson, B.G. and Batty, M. (eds), Advances in Urban Systems Modelling, pp. 3–13. Elsevier Science, Amsterdam.

    Google Scholar 

  • Harris B., 1985: Urban simulation-models in regional science. Journal of Regional Science 25: 545–567.

    Article  Google Scholar 

  • Harris B. and Batty M., 1993: Locational models, geographic information and planning support systems. Journal of Planning Education and Research 12: 184–198.

    Article  Google Scholar 

  • Hodgson M.J., Shmulevitz F. and Körkel M., 1997: Aggregation error effects on the discrete-space p-median model: the case of Edmonton, Canada. Canadian Geographer 41: 415.

    Article  Google Scholar 

  • Holt D., Steel D.G., Tranmer M. and Wrigley N., 1996: Aggregation and ecological effects in geographically based data. Geographical Analysis 28: 244–261.

    Article  Google Scholar 

  • Horner M.W. and Murray A.T., 2002: Excess commuting and the modifiable areal unit problem. Urban Studies 39: 131–139.

    Article  Google Scholar 

  • Innes J.E. and Simpson D.M., 1993: Implementing GIS for planning: lessons from the history of technological innovation. Journal of the American Planning Association 59: 230–236.

    Article  Google Scholar 

  • Jerrett M., Burnett R.T., Goldberg M.S., Sears M., Krewski D., Catalan R., Kanaroglou P., Giovis C. and Finkelstein N., 2003: Spatial analysis for environmental health research: concepts, methods, and examples. Journal of Toxicology and Environmental Health A 66: 1783–1810.

    Article  Google Scholar 

  • Jones K., 1991: Specifying and estimating multilevel models for geographical research. Transactions of the Institute of British Geographers 16: 148–159.

    Article  Google Scholar 

  • Jones K. and Bullen N., 1994: Contextual models of urban house prices: a comparison of fixed-coefficient and random-coefficient models developed by expansion. Economic Geography 70: 252–272.

    Article  Google Scholar 

  • Kanaroglou P.S. and Scott D.M., 2002: Integrated urban transportation and land-use models. In Dijst, M., Schenkel, W. and Thomas, I. (eds), Governing Cities on the Move: Functional and Management Perspectives on Transformations of European Urban Infrastructures, pp. 42-72. Ashgate, Aldershot.

  • Kanaroglou P.S., Soulakellis N.A. and Sifakis N.I., 2002: Improvement of satellite derived pollutions maps with the use of a geostatistical interpolation method. Journal of Geographical Systems 4: 193–208.

    Article  Google Scholar 

  • King G., 1997: A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data. Princeton University Press, Princeton.

    Google Scholar 

  • Krieger M.H., 1991: Segmentation and filtering into neighborhoods as processes of percolation and diffusion: stochastic-processes (randomness) as the null hypothesis. Environment and Planning A 23: 1609–1626.

    Article  Google Scholar 

  • Kwan M.P., 2000: Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: a methodological exploration with a large data set. Transportation Research C 8: 185–203.

    Article  Google Scholar 

  • Landis J. and Zhang M., 1998a: The second generation of the California urban futures model. part 1: model logic and theory. Environment and Planning B 25: 657–666.

    Article  Google Scholar 

  • Landis J. and Zhang M., 1998b: The second generation of the California urban futures model. part 2: specification and calibration results of the land-use change submodel. Environment and Planning B 25: 795–824.

    Article  Google Scholar 

  • Landis J. and Zhang M., 2000: Using GIS to improve urban activity and forecasting models: three examples. In Fotheringham, A.S. and Wegener, M. (eds), Spatial Models and GIS: New Potential and New Models, pp. 63–81. Taylor and Francis, London.

    Google Scholar 

  • Levine J. and Landis J., 1989: Geographic information systems for local planning. Journal of the American Planning Association 55: 209–220.

    Article  Google Scholar 

  • Liu S.X. and Zhu X.A., 2004: Accessibility analyst: an integrated GIS tool for accessibility analysis in urban transportation planning. Environment and Planning B 31: 105–124.

    Article  Google Scholar 

  • McMillen D.P., 1996: One hundred fifty years of land values in Chicago: a nonparametric approach. Journal of Urban Economics 40: 100–124.

    Article  Google Scholar 

  • McMillen D.P., 2001: Nonparametric employment subcenter identification. Journal of Urban Economics 50: 448–473.

    Article  Google Scholar 

  • McMillen D.P. and McDonald J.F., 1998: Population density in suburban Chicago: a bid-rent approach. Urban Studies 35: 1119–1130.

    Article  Google Scholar 

  • Meyer M.D. and Miller E.J., 2001: Urban Transportation Planning. 2nd Edition: McGraw-Hill, New York.

    Google Scholar 

  • Miller H.J., 1999: Potential contributions of spatial analysis to geographic information systems for transportation (GIS-T). Geographical Analysis 31: 373–399.

    Article  Google Scholar 

  • Miller H.J. and Shaw S.L., 2001: Geographic Information Systems for Transportation: Principles and Applications. Oxford University Press, Oxford.

    Google Scholar 

  • Miyamoto K., Vichiensan V., Shimomura N. and Páez A., 2004: Discrete choice model with structuralized spatial effects for location analysis. Transportation Research Record, forthcoming.

    Article  Google Scholar 

  • Moeckel R., Spiekermann K., Schürmann C. and Wegener M., 2003: Microsimulation of urban land use. Paper presented at the 9th Conference on Computers in Urban Planning and Urban Management, Sendai, Japan, 27–29 May.

  • Mohammadian A. and Kanaroglou P.S., 2003: Applications of spatial multinomial logit model to transportation planning. Paper presented at the 10th International Conference on Travel Behaviour Research, Lucerne, Switzerland, 10–14 August.

  • Murdoch J.C., Sandler T. and Sargent K., 1997: A tale of two collectives: sulphur versus nitrogen oxides emission reduction in Europe. Economica 64: 281–301.

    Article  Google Scholar 

  • Murray A. and Gottsegen J., 1997: The influence of data aggregation on the stability of p-median location model solutions. Geographical Analysis 29: 200–213.

    Article  Google Scholar 

  • Odland J., 1987: Spatial Autocorrelation. Sage Publications, Newbury Park.

    Google Scholar 

  • Okabe A. and Tagashira N., 1996: Spatial aggregation bias in a regression model containing a distance variable. Geographical Systems 3: 77–99.

    Google Scholar 

  • Okunuki K., 2001: Urban analysis with GIS. GeoJournal 52: 181–188.

    Article  Google Scholar 

  • Openshaw S., 1977a: Geographical solution to scale and aggregation problems in region-building, partitioning and spatial modeling. Transactions of the Institute of British Geographers 2: 459–472.

    Article  Google Scholar 

  • Openshaw S., 1977b: Optimal zoning systems for spatial interaction models. Environment and Planning A 9: 169–184.

    Article  Google Scholar 

  • Openshaw S., 1978a: An optimal zoning approach to the study of spatially aggregated data. In Masser, I. and Brown, P.J.B. (eds), Spatial Representation and Spatial Interaction, pp. 93–113. Martinus Nijhoff, Leiden.

    Google Scholar 

  • Openshaw S., 1978b: Empirical-study of some zone-design criteria. Environment and Planning A 10: 781–794.

    Article  Google Scholar 

  • Openshaw S. and Baxter R.S., 1977: Algorithm 3 — procedure to generate pseudo-random aggregations of n-zones into m-zones, where m is less than n. Environment and Planning A 9: 1423–1428.

    Article  Google Scholar 

  • Openshaw S. and Rao L., 1995: Algorithms for reengineering 1991 census geography. Environment and Planning A 27: 425–446.

    Article  Google Scholar 

  • Openshaw S. and Taylor P.J., 1979: A million or so correlation coefficients: three experiments on the modifiable areal unit problem. In Wrigley, N. (ed), Statistical Applications in the Spatial Sciences, pp. 127–144. Pion, London.

    Google Scholar 

  • Ord J.K. and Getis A., 1995: Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis 27: 286–306.

    Article  Google Scholar 

  • Ord J.K. and Getis A., 2001: Testing for local spatial autocorrelation in the presence of global autocorrelation. Journal of Regional Science 41: 411–432.

    Article  Google Scholar 

  • Ortúzar J.D. and Willumsen L.G., 2001: Modelling Transport. 3rd Edition: Wiley, New York.

    Google Scholar 

  • Pacheco A.I. and Tyrrell T.J., 2002: Testing spatial patterns and growth spillover effects in clusters of cities. Journal of Geographical Systems 4: 275–285.

    Article  Google Scholar 

  • Pacione M., 1990: Urban Problems: An Applied Urban Analysis. Routledge, London.

    Google Scholar 

  • Páez A., 2004: Network accessibility and the distribution of economic activity in Eastern Asia. Urban Studies (forthcoming).

  • Páez A. and Suzuki J., 2001: Transportation impacts on land use change: an assessment considering neighborhood effects. Journal of the Eastern Asia Society for Transportation Studies 4: 47–59.

    Google Scholar 

  • Páez A., Uchida T. and Miyamoto K., 2001: Spatial association and heterogeneity issues in land price models. Urban Studies 38: 1493–1508.

    Article  Google Scholar 

  • Peeters D. and Ruhigira J.D., 2004: Using the transportation problem to measure the proximity between two sets of weighted points in geographical space. Papers in Regional Science 72: 337–347.

    Article  Google Scholar 

  • Putman S.H. and Chung S.H., 1989: Effects of spatial system-design on spatial interaction models.1. the spatial system definition problem. Environment and Planning A 21: 27–46.

    Article  Google Scholar 

  • Quandt R., 1958: The estimation of parameters of a linear regression system obeying two separate regimes. Journal of the American Statistical Association 53: 873–880.

    Article  Google Scholar 

  • Ramos R.A.R. and Silva A.N.R., 2003: A data-driven approach for the definition of metropolitan regions. Paper presented at the 9th Conference on Computers in Urban Planning and Urban Management, Sendai, Japan, 27–29 May.

  • Raudenbush S.W., Bryk A.S., Cheong Y.F. and Congdon R., 2001: HLM 5: Hierarchical Linear and Nonlinear Modeling. 2nd Edition: Scientific Software International, Illinois.

    Google Scholar 

  • Rietveld P. and Wintershoven P., 1998: Border effects and spatial autocorrelation in the supply of network infrastructure. Papers in Regional Science 77: 265–276.

    Article  Google Scholar 

  • Robinson T.P., 2000: Spatial statistics and geographical information systems in epidemiology and public health. Advances in Parasitology 47: 81–128.

    Article  Google Scholar 

  • Scott D.M., Kanaroglou P.S. and Anderson W.P., 1997: Impacts of commuting efficiency on congestion and emissions: case of the Hamilton CMA, Canada. Transportation Research D 2: 245–257.

    Article  Google Scholar 

  • Spiekermann K. and Wegener M., 2000: Freedom from the tyranny of zones: towards new GIS-based spatial models. In Fotheringham, A.S. and Wegener, M. (eds), pp. 45-61. Taylor and Francis, London.

  • Stanilov K., 2003: Accessibility and land use: the case of suburban Seattle, 1960-1990. Regional Studies 37: 783–794.

    Article  Google Scholar 

  • Steel D.G. and Holt D., 1996: Rules for random aggregation. Environment and Planning A 28: 957–978.

    Article  Google Scholar 

  • Steenberghen T., Dufays T., Thomas I. and Flahaut B., 2004: Intra-urban location and clustering of road accidents using GIS: a Belgian example. International Journal of Geographical Information Science 18: 169–181.

    Article  Google Scholar 

  • Tagashira N. and Okabe A., 2002: The modifiable areal unit problem in a regression model whose independent variable is a distance from a predetermined point. Geographical Analysis 34: 1–20.

    Google Scholar 

  • Thill J.C., 2000: Geographic information systems for transportation in perspective. Transportation Research C 8: 3–12.

    Article  Google Scholar 

  • Tobler W.R., 1989: Frame independent spatial analysis. In Goodchild, M. and Gopal, S. (eds), Accuracy of Spatial Databases, pp. 115–122. Taylor and Francis, London.

    Google Scholar 

  • Tranmer M. and Steel D.G., 1998: Using census data to investigate the causes of the ecological fallacy. Environment and Planning A 30: 817–831.

    Article  Google Scholar 

  • Tse R.Y.C., 2002: Estimating neighbourhood effects in house prices: towards a new hedonic model approach. Urban Studies 39: 1165–1180.

    Article  Google Scholar 

  • Vichiensan V., Miyamoto K. and Shizukuishi K., 2001: GIS test bed building for land-use and transportation models. Paper presented at the 7th International Conference on Computers in Urban Planning and Urban Management, Hawaii, 14–16 July.

  • Wang D.G. and Cheng T., 2001: A spatio-temporal data model for activity-based transport demand modelling. International Journal of Geographical Information Science 15: 561–585.

    Article  Google Scholar 

  • Wang F.H., 2001: Explaining intraurban variations of commuting by job proximity and workers’ characteristics. Environment and Planning B 28: 169–182.

    Article  Google Scholar 

  • Wasserman S., Faust K. and Iacobucci D., 1994: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Wegener M., Gnade F. and Vannahme M., 1986: The time scale of urban change. In Hutchinson, B.G. and Batty, M. (eds), Advances in Urban Systems Modelling, pp. 175–197. Elsevier Science, Amsterdam.

    Google Scholar 

  • Whittle P., 1954: On stationary processes in a plane. Biometrika 41: 434–439.

    Article  Google Scholar 

  • Wise S., Haining R. and Ma J.S., 2001: Providing spatial statistical data analysis functionality for the GIS user: the SAGE project. International Journal of Geographical Information Science 15: 239–254.

    Article  Google Scholar 

  • Wong D.W.S., 1996: Aggregation effects in geo-referenced data. In: Arlinghaus S.L., Griffith D.A., Drake W.D. and Nystuen J.D. (eds), Practical Handbook of Spatial Statistics, pp. 83–106. CRC Press, Boca Raton.

    Google Scholar 

  • Wong D.W.S., Lasus H. and Falk R.F., 1999: Exploring the variability of segregation index D with scale and zonal systems: an analysis of thirty US cities. Environment and Planning A 31: 507–522.

    Article  Google Scholar 

  • You J., Nedoviæ-Budiæ Z. and Kim T.J., 1997a: A GIS-based traffic analysis zone design: technique. Transportation Planning and Technology 21: 45–68.

    Article  Google Scholar 

  • You J.S., Nedoviæ-Budiæ Z. and Kim T.J., 1997b: A GIS-based traffic analysis zone design: implementation and evaluation. Transportation Planning and Technology 21: 69–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Páez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Páez, A., Scott, D.M. Spatial statistics for urban analysis: A review of techniques with examples. GeoJournal 61, 53–67 (2004). https://doi.org/10.1007/s10708-005-0877-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-005-0877-5

Key words

Navigation