Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

EMHD free-convection boundary-layer flow from a Riga-plate

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The electro-magnetohydrodynamic (EMHD) free-convection flow of a weakly conducting fluid (e.g. seawater) from an electromagnetic actuator is considered. The actuator is a so called Riga-plate which consists of a spanwise aligned array of alternating electrodes and permanent magnets mounted on a plane surface. This array generates a surface-parallel Lorentz force which decreases exponentially in the direction normal to the (horizontal) plate. The free-convection boundary-layer flow induced by this body force is investigated numerically and analytically. It is shown that a certain length and velocity scale exists on which the flow characteristics are independent of the material properties of the fluid, as well as of the structural and functional parameters of the actuator. These universal velocity profiles are calculated numerically at different distances x from the leading edge and are discussed in some detail, both for the impermeable and the permeable Riga-plate when; in the latter case, a uniform lateral suction or injection of the fluid is applied. For the flow characteristics analytical approximations are reported. The asymptotic suction profiles approached for large values of x are given in exact analytical form. From a mathematical point of view the basic equations of the present boundary-value problem resemble those of the classical Blasius problem with an inhomogeneous forcing instead of an external flow and, accordingly, a homogeneous asymptotic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gailitis A, Lielausis O (1961) On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl Magnetohydrodyn Rep Phys Inst Riga 12: 143–146

    Google Scholar 

  2. Avilov VV (1998) Electric and magnetic fields for the Riga plate. Technical Report, FRZ, Rossendorf

  3. Tsinober AB, Shtern AG (1967) Possibility of increasing the flow stability in a boundary layer by means of crossed electric and magnetic fields. Magnetohydrodynamics 3: 103–105

    Google Scholar 

  4. Grinberg E (1961) On determination of properties of some potential fields. Appl Magnetohydrodyn Rep Phys Inst Riga 12: 147–154

    MathSciNet  Google Scholar 

  5. Nosenchuck DM, Brown GL (1993) Direct spatial control of wall shear stress in a turbulent boundary layer. In: So RMC, Speziale CG, Launder BE (eds) Near wall turbulent flows. Elsevier, New York, pp 689–698

    Google Scholar 

  6. Meng JCS, Henoch C, Hubers JD (1994) Seawater electrohydrodynamics: a new frontier. Magnetohydrodyn 30: 401–418

    Google Scholar 

  7. Henoch C, Stace J (1995) Experimental investigation of a salt-water turbulent boundary-layer modified by an applied streamwise magnetohydrodynamic body force. Phys Fluids 7: 1371–1383. doi:10.1063/1.868525

    Article  ADS  Google Scholar 

  8. Crawford CH, Karniadakis GE (1997) Reynolds stress analysis of EMHD-controlled wall turbulence. 1. Streamwise forcing. Phys Fluids 9: 788–806. doi:10.1063/1.869210

    Article  ADS  Google Scholar 

  9. O’Sullivan PL, Biringen S (1998) Direct numerical simulation of low Reynolds number turbulent channel flow with EMHD control. Phys Fluids 10: 1169–1181. doi:10.1063/1.869641

    Article  ADS  Google Scholar 

  10. Kim J (1997) Boundary layer control for drag reduction: taming turbulence. In: Gerbeth G (ed) International workshop on electromagnetic boundary layer control for saltwater flows. Forschungszentrum Rossendorf

  11. Berger TW, Kim J, Lee C, Lim J (2000) Turbulent boundary layer control utilizing the Lorentz force. Phys Fluids 12: 631–649. doi:10.1063/1.870270

    Article  MATH  ADS  Google Scholar 

  12. Pang J, Choi KS (2004) Turbulent drag reduction by Lorentz force oscillation. Phys Fluids 16: L35–L38. doi:10.1063/1.1689711

    Article  ADS  Google Scholar 

  13. Mutschke G, Gerbeth G, Albrecht T, Grundmann R (2006) Separation control at hydrofoils using Lorentz forces. Eur J Mech B Fluids 25: 137–152. doi:10.1016/j.euromechflu.2005.05.002

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim SJ, Lee CM (2000) Investigation of the flow around a circular cylinder under the influence of an electromagnetic force. Exp Fluids 28: 252–260. doi:10.1007/s003480050385

    Article  Google Scholar 

  15. Posdziechp O, Grundmann R (2001) Electromagnetic control of seawater flow around circular cylinders. Eur J Mech B Fluids 20: 255–274. doi:10.1016/S0997-7546(00)01111-0

    Article  Google Scholar 

  16. Breuer KS, Park J, Henoch C (2004) Actuation and control of a turbulent channel flow using Lorentz forces. Phys Fluids 16: 897–907. doi:10.1063/1.1647142

    Article  ADS  Google Scholar 

  17. Shatrov V, Gerbeth G (2007) Magnetohydrodynamic drag reduction and its efficiency. Phys Fluids 19(035109): 1–12

    Google Scholar 

  18. Weier T, Gerbeth G, Mutschke G, Lielausis O, Lammers G (2003) Control of flow separation using electromagnetic forces. Flow Turbul Combus 71: 5–17. doi:10.1023/B:APPL.0000014922.98309.21

    Article  MATH  Google Scholar 

  19. Weier T, Gerbeth G (2004) Control of separated flows by time periodic Lorentz forces. Eur J Mech B Fluids 23: 835–849. doi:10.1016/j.euromechflu.2004.04.004

    Article  MATH  Google Scholar 

  20. Du YQ, Karniadakis GE (2000) Suppressing wall turbulence by means of a transverse traveling wave. Science 288: 1230–1234. doi:10.1126/science.288.5469.1230

    Article  ADS  Google Scholar 

  21. Du YQ, Symeonidis V, Karniadakis GE (2002) Drag reduction in wall-bounded turbulence via a transverse traveling wave. J Fluid Mech 457: 1–34. doi:10.1017/S0022112001007613

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Albrecht T, Grundmann R, Mutschke G, Gerbeth G (2006) On the stability of the boundary layer subject to a wall-parallel Lorentz force. Phys Fluids 18(098103): 1–4

    MathSciNet  Google Scholar 

  23. Weier T (2005) Elektromagnetische Strömungskontrolle mit wandparallelen Lorentzkräften in schwach leitfähigen Fluiden. Dissertation, Technische Universität Dresden, 252 pp

  24. Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  25. White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asterios Pantokratoras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantokratoras, A., Magyari, E. EMHD free-convection boundary-layer flow from a Riga-plate. J Eng Math 64, 303–315 (2009). https://doi.org/10.1007/s10665-008-9259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-008-9259-6

Keywords

Navigation