Abstract
Alzheimer disease is a significant problem in public health. Alzheimer disease causes severe problems with thinking, memory and activities. Alzheimer disease affected more on the people who are in the age group of 80-year-90. The foot movement monitoring system is used to detect the early stage of Alzheimer disease. internets of things (IoT) devices are used in this paper to monitor the patients’ foot movement in continuous manner. This paper uses dynamic time warping (DTW) algorithm to compare the various shapes of foot movements collected from the wearable IoT devices. The foot movements of the normal individuals and people who are affected by Alzheimer disease are compared with the help of middle level cross identification (MidCross) function. The identified cross levels are used to classify the gait signal for Alzheimer disease diagnosis. Sensitivity and specificity are calculated to evaluate the DTW algorithm based classification model for Alzheimer disease. The classification results generated using the DTW is compared with the various classification algorithms such as inertial navigation algorithm, K-nearest neighbor classifier and support vector machines. The experimental results proved the effectiveness of the DTW method.
Similar content being viewed by others
References
The Hindu: 12. http://www.thehindu.com/news/cities/Hyderabad/many-unaware-of-alzheimers-disease-in-india/article5390719.ece. Accessed 27 Jan 2017 (2017)
Chandra, V., Pandav, R., Dodge, H.H., Johnston, J.M., Belle, S.H., DeKosky, S.T., Ganguli, M.: Incidence of Alzheimer’s disease in a rural community in India The Indo-US Study. Neurology 57(6), 985–989 (2001)
Chandra, V., Ganguli, M., Pandav, R., Johnston, J., Belle, S., DeKosky, S.T.: Prevalence of Alzheimer’s disease and other dementias in rural India The Indo-US study. Neurology 51(4), 1000–1008 (1998)
Pandav, R.S., Chandra, V., Dodge, H.H., DeKosky, S.T., Ganguli, M.: Hemoglobin levels and Alzheimer disease: an epidemiologic study in India. Am. J. Geriatr. Psychiatry 12(5), 523–526 (2004)
Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)
Zhu, N., Diethe, T., Camplani, M., Tao, L., Burrows, A., Twomey, N., Kaleshi, D., Mirmehdi, M., Flach, P., Craddock, I.: Bridging e-health and the internet of things: the sphere project. IEEE Intell. Syst. 30(4), 39–46 (2015)
Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K.M., Sundarsekar, R.: Big Data Knowledge System in Healthcare. InInternet of Things and Big Data Technologies for Next Generation Healthcare, pp. 133–157. Springer, Berlin (2017)
Tsai, C.W., Lai, C.F., Chiang, M.C., Yang, L.T.: Data mining for Internet of Things: A survey. IEEE Commun. Surv. Tutor. 16(1), 77–97 (2014)
Agrawal, S., Das, M.L.: Internet of things—a paradigm shift of future internet applications. In: 2011 Nirma University International Conference on Engineering (NUiCONE), pp. 1–7. IEEE, 8 Dec 2011
Alam, S., Chowdhury, M.M., Noll, J.: Senaas: an event-driven sensor virtualization approach for internet of things cloud. In: 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications (NESEA), pp. 1–6. IEEE, 25 Nov 2010
Pasluosta, C.F., Gassner, H., Winkler, J., Klucken, J., Eskofier, B.M.: An emerging era in the management of Parkinson’s disease: wearable technologies and the internet of things. IEEE J. Biomed. Health Inform. 19(6), 1873–1881 (2015)
Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)
Botta, A., De Donato, W., Persico, V., Pescapé, A.: On the integration of cloud computing and internet of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), pp. 23–30. IEEE, 27 Aug 2014
Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012)
Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)
Wang, Y.P., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y., Bergman, J., Razaghi, H.S.: A primer on 3GPP narrowband internet of things. IEEE Commun. Mag. 55(3), 117–123 (2017)
Stojkoska, B.L., Trivodaliev, K.V.: A review of internet of things for smart home: challenges and solutions. J. Clean. Prod. 1(140), 1454–1464 (2017)
Manogaran, G., Thota, C., Kumar, M.V.: MetaCloudDataStorage architecture for big data security in cloud computing. Procedia Comput. Sci. 31(87), 128–133 (2016)
Manogaran, G., Lopez, D.: Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput. Electr. Eng. 59(1), 1–25 (2017)
Lopez, D., Manogaran, G.: Modelling the H1N1 influenza using mathematical and neural network approaches. Biomed. Res. 28(8), 1–5 (2017)
Manogaran, G., Thota, C., Lopez, D., Sundarasekar, R.: Big data security intelligence for Healthcare Industry 4.0. In: Cybersecurity for Industry 4.0, pp. 103–126. Springer, Berlin (2017)
Mulani, T.T., Pingle, S.V.: Internet of things. Int. Res. J. Multidiscip. Stud. 2(3) (2016)
Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 31(56), 684–700 (2016)
Bello, O., Zeadally, S.: Intelligent device-to-device communication in the internet of things. IEEE Syst. J. 10(3), 1172–1182 (2016)
Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., Qiao, Y.: A survey on position-based routing for vehicular ad hoc networks. Telecommun. Syst. 62(1), 15–30 (2016)
Li, G., Ma, M., Liu, C., Shu, Y.: Routing in taxi and public transport based heterogeneous vehicular networks. In: Region 10 Conference (TENCON), 2016 IEEE, pp. 1863–1866. IEEE, 22 Nov 2016
Dinesh, M., Sudhaman, K.: Real time intelligent image processing system with high speed secured internet of things: image processor with IOT. In: 2016 International Conference on Information Communication and Embedded Systems (ICICES), pp. 1–5. IEEE, 25 Feb 2016
Kaur, A., Kaur, P.: A comparative study of various exudate segmentation techniques for diagnosis of diabetic retinopathy. Int. J. Curr. Eng. Technol. 46(1), 142–146 (2016)
Jeyabalan, K.: Home Healthcare and Remote Patient Monitoring. Internet of Things and Data Analytics Handbook, pp. 675–682 (2017)
Hiremath, S., Yang, G., Mankodiya, K.: Wearable internet of things: concept, architectural components and promises for person-centered healthcare. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 304–307. IEEE, 3 Nov 2014
Patel, A.R., Patel, R.S., Singh, N.M., Kazi, F.S.: Vitality of Robotics in Healthcare Industry: an internet of things (IoT) perspective. In: Internet of Things and Big Data Technologies for Next Generation Healthcare, pp. 91–109. Springer, Berlin (2017)
Memon, M., Wagner, S.R., Pedersen, C.F., Beevi, F.H., Hansen, F.O.: Ambient assisted living healthcare frameworks, platforms, standards, and quality attributes. Sensors 14(3), 4312–4341 (2014)
Zhang, X., Francis, B.A., Dastiridou, A., Chopra, V., Tan, O., Varma, R., Greenfield, D.S., Schuman, J.S., Huang, D., Advanced Imaging for Glaucoma Study Group: Longitudinal and cross-sectional analyses of age effects on retinal nerve fiber layer and ganglion cell complex thickness by Fourier-domain OCT. Transl. Vis. Sci. Technol. 5(2):1 (2016)
Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Lovell, N.H.: Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 619–627 (2010)
Bamberg, S.J., Benbasat, A.Y., Scarborough, D.M., Krebs, D.E., Paradiso, J.A.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12(4), 413–423 (2008)
Patterson, D.J., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Ninth IEEE International Symposium on Wearable Computers, 2005. Proceedings, pp. 44–51). IEEE, 18 Oct 2005
Im, S., Kim, I.J., Ahn, S.C., Kim, H.G.: Automatic ADL classification using 3-axial accelerometers and RFID sensor. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008, pp. 697–702. IEEE, 20 Aug 2008
Farringdon, J., Moore, A.J., Tilbury, N., Church, J., Biemond, P.D.: Wearable sensor badge and sensor jacket for context awareness. In: The Third International Symposium on Wearable Computers, 1999. Digest of Papers, pp. 107–113. IEEE, 18 Oct 1999
Atallah, L., Lo, B., King, R., Yang, G.Z.: Sensor placement for activity detection using wearable accelerometers. In: 2010 International Conference on Body Sensor Networks (BSN), pp. 24–29. IEEE, 7 June 2010
Bulling, A., Ward, J.A., Gellersen, H., Troster, G.: Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 741–753 (2011)
Crouter, S.E., Clowers, K.G., Bassett, D.R.: A novel method for using accelerometer data to predict energy expenditure. J. Appl. Physiol. 100(4), 1324–1331 (2006)
Uji, A., Abdelfattah, N.S., Boyer, D.S., Balasubramanian, S., Lei, J., Sadda, S.R.: Variability of retinal thickness measurements in tilted or stretched optical coherence tomography images. Transl. Vis. Sci. Technol. 6(2):1 (2017)
Li, C., Wang, X., Eberl, S., Fulham, M., Feng, D.: A new energy framework with distribution descriptors for image segmentation. IEEE Trans. Image Process. 22(9), 3578–3590 (2013)
Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., Sundarasekar, R.: Big data analytics in healthcare internet of things. In: Innovative Healthcare Systems for the 21st Century, pp. 263–284. Springer, Berlin (2017)
Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., Priyan, M.K: Centralized fog computing security platform for iot and cloud in healthcare system. In: Exploring the Convergence of Big Data and the Internet of Things. IGI Global, USA
Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)
Manogaran, G., Lopez, D.: Health data analytics using scalable logistic regression with stochastic gradient descent. Int. J. Adv. Intell. Paradig. 9(1), 1–18 (2016)
Thota, C., Manogaran, G., Lopez, D.: Architecture for big data storage in different cloud deployment models. In: Segall, R.S., Cook, J.S., Gupta, N. (eds.) Big Data Storage and Visualization Techniques. IGI Global
Sempena, S., Maulidevi, N.U., Aryan, P.R.: Human action recognition using dynamic time warping. In: 2011 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–5. IEEE, 17 July 2011
Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)
Baumann, M., Ozdogan, M., Richardson, A.D., Radeloff, V.C.: Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves. Int. J. Appl. Earth Obs. Geoinf. 28(54), 72–83 (2017)
Zhang, Z., Tavenard, R., Bailly, A., Tang, X., Tang, P., Corpetti, T.: Dynamic time warping under limited warping path length. Inf. Sci. 31(393), 91–107 (2017)
Wan, Y., Chen, X.L., Shi, Y.: Adaptive cost dynamic time warping distance in time series analysis for classification. J. Comput. Appl. Math. 1(319), 514–520 (2017)
Lopez, D., Gunasekaran, M., Murugan, B.S., Kaur, H., Abbas, K.M.: Spatial big data analytics of influenza epidemic in Vellore, India. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 19–24. IEEE, 27 Oct 2014
Lopez, D., Gunasekaran, M.: Assessment of vaccination strategies using fuzzy multi-criteria decision making. In: Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO-2015) 2015, pp. 195–208. Springer, Berlin
Lopez, D., Sekaran, G.: Climate change and disease dynamics-A big data perspective. Int. J. Infect. Dis. 1(45), 23–24 (2016)
Lopez, D., Manogaran, G.: Big data architecture for climate change and disease dynamics. The Human Element of Big Data: Issues, Analytics, and Performance. CRC Press, Boca Raton (2016)
Manogaran, G., Lopez, D.: Disease surveillance system for big climate data processing and dengue transmission. Int. J. Ambient Comput. Intell. 8(2), 88–105 (2017)
Wen, J., Chang, X.W.: Success probability of the Babai estimators for box-constrained integer linear models. IEEE Trans. Inf. Theory 63(1), 631–648 (2017)
Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)
Wen, J., Li, D., Zhu, F.: Stable recovery of sparse signals via lp-minimization. Appl. Comput. Harmonic Anal. 38(1), 161–176 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Varatharajan, R., Manogaran, G., Priyan, M.K. et al. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Comput 21, 681–690 (2018). https://doi.org/10.1007/s10586-017-0977-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-017-0977-2