Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Representations of Hom-Lie Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this paper, we study representations of hom-Lie algebras. In particular, the adjoint representation and the trivial representation of hom-Lie algebras are studied in detail. Derivations, deformations, central extensions and derivation extensions of hom-Lie algebras are also studied as an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and Deformations of Hom-algebras. arXiv:1005.0456 (2010)

  2. Benayadi, S., Makhlouf, A.: Hom-Lie Algebras with Symmetric Invariant NonDegenerate Bilinear Forms. arXiv:1009.4226 (2010)

  3. Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63, 85–124 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorfman, I.: Dirac Structures and Integrability of Nonlinear Evolution Equation. Wiley, New York (1993)

    Google Scholar 

  5. Hartwig, J., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using σ-derivations. J. Algebra 295, 314–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jacobson, N.: Lie Algebras. Dover Publications, Inc. New York (1962)

    MATH  Google Scholar 

  7. Larsson, D., Silvestrov, S.: Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 288, 321–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Larsson, D., Silvestrov, S.: Quasi-Lie algebras. Contemp. Math. 391, 241–248 (2005)

    Article  MathSciNet  Google Scholar 

  9. Makhlouf, A., Silvestrov, S.: Notes on formal deformations of hom-associative and hom-Lie algebras. Forum Math. 22(4), 715–739 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Makhlouf, A., Silvestrov, S.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(2), 51–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sheng, Y.: Linear Poisson structures on \(\mathbb R^4\). J. Geom. Phys. 57, 2398–2410 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yau, D.: Hom–Yang–Baxter equation, hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A: Math. Theory 42, 165202 (2009)

    Article  Google Scholar 

  13. Yau, D.: Hom-algebras and homology. J. Lie Theory 19, 409–421 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Yau, D.: Enveloping algebras of hom-Lie algebras. J. Gen. Lie Theory Appl. 2, 95–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Sheng.

Additional information

Research partially supported by NSF of China (11026046), Doctoral Fund. of EMC (20100061120096) and the Fundamental Research Fund for the Central Universities (200903294).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Y. Representations of Hom-Lie Algebras. Algebr Represent Theor 15, 1081–1098 (2012). https://doi.org/10.1007/s10468-011-9280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-011-9280-8

Keywords

Mathematics Subject Classifications (2010)

Navigation