Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An extensible and active semantic model of information organizing for the Internet of Things

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Data management and information processing play the key roles in developing the Internet of Things (IoT). The requirements of a well-defined data model for IoT involve in six aspects: semantic supporting, active data extracting and explaining, flexibility and extensibility, enabling to manage massive and heterogeneous data, supporting formal organization, and solid mathematic-based theory. This paper aims to exploring an extensible and active semantic information organization model for IoT to meet the above requirements, and the primary idea is “Object-cored organizing data, event-based explaining data, and knowledge-based using data.” The proposed model involves two layers: the object layer and the event layer, and both of them are discussed in detail including conceptions, schema definitions, and the rule-based knowledge representation. Semantic reasoning can be supported by the knowledge base which involves in a set of reasoning rules on semantic relations among objects or among events correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. OpenIoT: IoT Semantic Interoperability-Challenges, Best Practices, Solutions and Next Steps www.probe-it.eu/wp-content/uploads/2013/10/IERC-AC4-SemanticInteroperabilityManifesto-V1_130830-Final1.pdf.

References

  1. Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13(6):377–387

    Article  MATH  Google Scholar 

  2. Astrahan MM, Blasgen MW et al (1976) System R: relational approach to database management. ACM Trans Database Syst (TODS) 1(2):97–137

    Article  Google Scholar 

  3. Tsichritzis DC, Lochovsky FH (1976) Hierarchical data-base management: a survey. ACM Comput Surv (CSUR) 8(1):105–123

    Article  MATH  Google Scholar 

  4. Bjorner D, Lovengreen H (1982) Formalization of database systems: and a formal definition of IMS (Invited Paper). In: Proceedings of the 8th international conference on very large data bases, pp 334–347

  5. Bachman CW (1969) Data structure diagrams. ACM SIGMIS Database 1(2):4–10

    Article  Google Scholar 

  6. Bachman CW (1973) The programmer as navigator. Commun ACM 16(11):653–658

    Article  Google Scholar 

  7. Zhao L, Roberts SA (1991) Object-oriented data models: a perspective and comparative review. J Inf Sci 17(3):145–160

    Article  Google Scholar 

  8. Chen PP (1976) The entity-relationship model: toward a unified view of data. ACM Trans Database Syst (TODS) 1(1):9–36

    Article  Google Scholar 

  9. Peng D, Dabek F (2010) Large-scale incremental processing using distributed transactions and notifications. In: The 9th USENIX symposium on operating systems design and implementation (OSDI 2010), Vancouver, BC, Canada

  10. Zhang C (2010) Supporting multi-row distributed transactions with global snapshot isolation using bare-bones HBase. In: The 11th ACM/IEEE international conference on grid computing (Grid 2010), Brussels, Belgium

  11. Seeger M, Ultra-Large-Sites S (2009) Key-value stores: a practical overview. Computer Science and Media, Stuttgart

  12. Chang F, Dean J, Ghemawat S et al (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(4):1–4

    Article  MATH  Google Scholar 

  13. Wei W, Yu T, Xue R (2013) iBigTable: practical data integrity for BigTable in PUBLIC cloud. In: Proceedings of the 3rd ACM conference on data and application security and privacy, CODASPY’13, New York, NY, USA, pp 341–352

  14. http://www.mongodb.com/document-databases

  15. Angles R, Gutierrez C (2008) Survey of graph database models. ACM Comput Surv (CSUR) 40(1):1–39

    Article  Google Scholar 

  16. White T (2012) Hadoop: the definitive guide. O’Reilly Media. 3

  17. Snijders C, Matzat U, Reips UD (2012) ‘Big Data’: big gaps of knowledge in the field of Internet science. Int J Internet Sci 7:1–5

    Google Scholar 

  18. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43

    Article  Google Scholar 

  19. John F (1992) Sowa; semantic networks, encyclopedia of artificial intelligence. http://www.jfsowa.com/pubs/semnet.htm

  20. Quillian MR (1968) Semantic memory. In: Minsky M (ed) Semantic information processing. MIT Press, Cambridge, MA

    Google Scholar 

  21. Zhuge H (2009) Communities and emerging semantics in semantic link network: discovery and learning. IEEE Trans Knowl Data Eng 21(6):785–799

    Article  MathSciNet  Google Scholar 

  22. Zhuge H, Sun Y et al (2005) Algebra model and experiment for semantic link network. Int J High Perform Comput Netw 3(4):227–238

    Article  Google Scholar 

  23. Zhuge H (2007) Autonomous semantic link networking model for the knowledge grid. Concurr Comput Pract Exp 7(19):1065–1085

    Article  Google Scholar 

  24. Zhuge H, Sun Y (2010) The schema theory for semantic link network. Futur Gener Comput Syst 26(3):408–420

    Article  Google Scholar 

  25. Jara A, Olivieri A, Bocchi Y, Jung M, Kastner W, Skarmeta A (2014) Semantic web of things: an analysis of the application semantics for the IoT moving towards the IoT convergence. Int J Web Grid Serv 10(2/3):244–272

    Article  Google Scholar 

  26. Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho O, Cox S, Taylor K (2012) The SSN ontology of the W3C semantic sensor network incubator group. Web Semant Sci Serv Agents World Wide Web 17:25–32

    Article  Google Scholar 

  27. Botts M (2007) OGC implementation specification 07-000: OpenGIS sensor model language (SensorML)-open geospatial consortium. Tech. Rep

  28. Simonis I, Dibner PC (eds) (2007) OpenGIS sensor planning service implementation specification. Implemention Specification OGC pp 1–21

  29. Zorzi M, Gluhak A, Lange S, Bassi A (2010) From today’s intranet of things to a future internet of things: a wireless-and mobility-related view. Wirel Commun IEEE 17(6):44–51

    Article  Google Scholar 

  30. Sun Y, Yan H et al (2014) Constructing the web of events from raw data in the web of things. Mobile Inf Syst 10(1):105–125

    Google Scholar 

  31. Sun Y, Yan H et al (2014) Organizing and querying the big sensing data with event-linked network in the internet of things. Int J Distrib Sens Netw 1–11. Article ID 218521

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchuan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Jara, A.J. An extensible and active semantic model of information organizing for the Internet of Things. Pers Ubiquit Comput 18, 1821–1833 (2014). https://doi.org/10.1007/s00779-014-0786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-014-0786-z

Keywords

Navigation