Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Interference characteristics in a Fabry–Perot cavity with graphene membrane for optical fiber pressure sensors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Due to higher mechanical strength and ultra-thin thickness, graphene is used as a sensitive diaphragm in a Fabry–Perot cavity to improve the sensitivity of pressure sensors. In accordance with the working principle of Fabry–Perot interferometer, a load–deflection mathematical model of fiber-tip pressure sensor with graphene membrane is established based on the large deflection elastic theory of circular membrane. The effects of membrane parameters, including prestressing force and membrane layer number, on deflection mechanical behaviors are studied by using finite element method. Also, the effects of graphene membrane layer and incident light angle on the film reflectivity are obtained according to the refractive index characteristics of the membrane. The simulation results show that an approximate linear relation between loads and deflections exists in the simulated pressure range from 0 to 3.5 kPa, and a theoretical pressure sensitivity of 1,096 nm/kPa for a single-layered graphene membrane can be achieved. To estimate the performance of multi-layered graphene membrane as the diaphragm, an extremely thin 13-layered 125-μm diameter graphene diaphragm is fabricated on the tip of the fiber end, which forms a low finesse Fabry–Perot interferometer. The Fabry–Perot cavity with a length of 40 μm can exhibit a fringe visibility of approximate 0.56 with a measured membrane reflectivity of 1.49 %. The experimental results demonstrate that the use of graphene as diaphragm material would allow highly sensitive and miniature fiber-tip sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

q :

Pressure load

\(\omega\) :

Center deflection of circular diaphragm

E :

Young’s modulus

D :

Bending rigidity

F r :

Radial internal force

r :

Radius of graphene membrane

t :

Thickness of graphene membrane

υ :

Poisson’s ratio

σ 0 :

Membrane prestress

λ :

Wavelength of incident light

N 1 :

Refractive index of graphene

\(\theta\) :

Incident angles \(\theta\) relative to the normal direction of membrane

\(\theta_{1}\) :

Refraction angle of light travelling inside the membrane

\(\theta_{2}\) :

Transmission angle of light passing through the membrane

r 1 :

Complex reflection coefficient of graphene membrane

r 1p :

Complex reflection coefficient for P-polarized light

r 1s :

Complex reflection coefficient for S-polarized light

\(\eta_{0}\) :

Optical admittance of air

\(\eta_{1}\) :

Optical admittance of graphene

N 0 :

Refractive index of air

R 1 :

Reflectivity of graphene membrane

R 2 :

Reflectivity of fiber end face

I r :

Interference intensity

I i :

Incident intensity

\(\delta\) :

Phase difference between two adjacent beams

L :

Cavity length

\(\xi\) :

Coupling coefficient of cavity length loss

w 0 :

Mode field radius

l :

Transmission distance of light in a Fabry–Perot cavity

References

  • Ansari R, Arash B, Rouhi H (2011) Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions. Comput Mater Sci 50(11):3091–3100

    Article  Google Scholar 

  • Beams JW (1959) The structure and properties of thin film. Wiley, New York

    Google Scholar 

  • Beheim G (1987) Fiber-linked interferometric pressure sensor. Rev Sci Instrum 58(9):1655–1659

    Article  Google Scholar 

  • Bunch JS, Van Der Zande AM, Verbridge SS et al (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  Google Scholar 

  • Bunch JS, Verbridge SS, Alden JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462

    Article  Google Scholar 

  • Chen LH, Chan CC, Yuan W et al (2010) High performance chitosan diaphragm-based fiber-optic acoustic sensor. Sens Actuators A 163(1):42–47

    Article  Google Scholar 

  • Hill GC, Melamud R, Declercq FE et al (2007) SU-8 MEMS Fabry–Perot pressure sensor. Sens Actuators A 138(1):52–62

    Article  Google Scholar 

  • Kwon Oh Kuen, Lee Jun Ha, Kim Ki-Sub, Kang Jeong Won (2013) Developing ultrasensitive pressure sensor based on graphene nanoribbon: molecular dynamics simulation. Phys E 47:6–11

    Article  Google Scholar 

  • Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  • Ma C, Dong B, Gong J et al (2011) Decoding the spectra of low-finesse extrinsic optical fiber Fabry–Perot interferometers. Opt Express 19(24):23727–23742

    Article  Google Scholar 

  • Ma Jun, Jin Wei, Ho Hoi Lut (2012a) High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt Lett 37(13):2493–2495

    Article  Google Scholar 

  • Ma J, Jin W, Ho HL et al (2012b) High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt Lett 37(13):2493–2495

    Article  Google Scholar 

  • Ma Jun, Xuan Haifeng, Ho Hoi Lut, Jin Wei, Yang Yuanhong, Fan Shangchun (2013) Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technol Lett 25(10):932–935

    Article  Google Scholar 

  • Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Article  Google Scholar 

  • Nelson FJ, Kamineni VK, Zhang T et al (2010) Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry. Appl Phys Lett 97(25):253110

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  • Rao YJ (2006) Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Opt Fiber Technol 12(3):227–237

    Article  Google Scholar 

  • Sorkin V, Zhang YW (2011) Graphene-based pressure nano-sensors. J Mol Model 17(11):2825–2830

    Article  Google Scholar 

  • Tang J, Gu P (1989) Thin film optics and technology. China Machine Press, Beijing (in Chinese)

  • Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, New York

    Google Scholar 

  • Wang W, Wu N, Tian Y et al (2010) Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Opt Express 18(9):9006–9014

    Article  Google Scholar 

  • Wang DX, Fan SC, Jin W (2013) Graphene diaphragm analysis for pressure or acoustic sensor applications. Microsyst Technol 1–6

  • Xu F, Ren D, Shi X et al (2012) High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm. Opt Lett 37(2):133–135

    Article  Google Scholar 

  • Zhou X, Yu Q (2011) Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement. Sens J IEEE 11(7):1602–1606

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT1203), the National Nature Science Fund of China (61121003), the Fundamental Research Funds for the Central Universities (YWF-14-YQGD-004) and the Graduate Innovation Fund of Beihang University (YCSJ-01-2014-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xiao, J., Guo, T. et al. Interference characteristics in a Fabry–Perot cavity with graphene membrane for optical fiber pressure sensors. Microsyst Technol 21, 2297–2306 (2015). https://doi.org/10.1007/s00542-014-2333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2333-2

Keywords

Navigation