Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Principles underlying mammalian neocortical scaling

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract.

 The neocortex undergoes a complex transformation from mouse to whale. Whereas synapse density remains the same, neuron density decreases as a function of gray matter volume to the power of around −1/3, total convoluted surface area increases as a function of gray matter volume to the power of around 8/9, and white matter volume disproportionately increases as a function of gray matter volume to the power of around 4/3. These phylogenetic scaling relationships (including others such as neuron number, neocortex thickness, soma radius, and number of cortical areas) are clues to understanding the principles driving neocortex organization, but there is currently no theory that can explain why these neocortical quantities scale as they do. Here I present a two-part model that explains these neocortical allometric scaling laws. The first part of the model is a special case of the physico-mathematical model recently put forward to explain the quarter power scaling laws in biology. It states that the neocortex is a space-filling neural network through which materials are efficiently transported, and that synapse sizes do not vary as a function of gray matter volume. The second part of the model states that the neocortex is economically organized into functionally specialized areas whose extent of area-interconnectedness does not vary as a function of gray matter volume. The model predicts, among other things, that the number of areas and the soma radius increase as a function of gray matter volume to the power of 1/3 and 1/9, respectively, and empirical support is demonstrated for each. Also, the scaling relationships imply that, although the percentage of the total number of neurons to which a neuron connects falls as a function of gray matter volume with exponent −1/3, the network diameter of the neocortex is invariant at around two. Finally, I discuss how a similar approach may have promise in explaining the scaling relationships for the brain and other organs as a function of body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 23 December 1999 / Accepted in revised form: 2 August 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Changizi, M. Principles underlying mammalian neocortical scaling. Biol Cybern 84, 207–215 (2001). https://doi.org/10.1007/s004220000205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004220000205

Keywords

Navigation