Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multifractal Analysis of Complex Random Cascades

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We achieve the multifractal analysis of a class of complex valued statistically self-similar continuous functions. For we use multifractal formalisms associated with pointwise oscillation exponents of all orders. Our study exhibits new phenomena in multifractal analysis of continuous functions. In particular, we find examples of statistically self-similar such functions obeying the multifractal formalism and for which the support of the singularity spectrum is the whole interval [0, ∞].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbeiter M., Patszchke N.: Random self-similar multifractals. Math. Nachr. 181, 5–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arneodo A., Bacry E., Muzy J.-F.: Random cascades on wavelet dyadic trees. J. Math. Phys. 39, 4142–4164 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Aubry J.M., Jaffard S.: Random wavelet series. Commun. Math. Phys. 227, 483–514 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bacry E., Muzy J.-F.: Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236, 449–475 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Barral J.: Continuity of the multifractal spectrum of a random statistically self-similar measure. J. Theo. Probab. 13, 1027–1060 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barral J.: Generalized vector multiplicative cascades. Adv. Appl. Prob. 33, 874–895 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barral, J., Jin, X., Mandelbrot, B.B.: Convergence of complex multiplicative cascades. Ann. Appl. Proba. (to appear)

  8. Barral, J., Mandelbrot, B.B.: Random Multiplicative Multifractal Measures I, II, III. In: Lapidus, M., Frankenhuijsen, M.V. ed. Fractal geometry and applications: a jubilee of Benoî t Mandelbrot, Proc. Symp. Pure Math. 72(2), Providence, RI: Amer. Math. Soc., 2004, pp. 3–90

  9. Barral J., Seuret S.: From multifractal measures to multifractal wavelet series. J. Fourier Anal. Appl. 11, 589–614 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bedford T.: Hölder exponents and box dimension for self-affine fractal functions. Fractal approximation. Constr. Approx. 5, 33–48 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ben Slimane M.: Multifractal formalism and anisotropic selfsimilar functions. Math. Proc. Camb. Phil. Soc. 124, 329–363 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Biggins J.D.: Uniform Convergence of Martingales in the Branching Random Walk. Ann. Prob. 20, 137–151 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brown G., Michon G., Peyrière J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–790 (1992)

    Article  MATH  ADS  Google Scholar 

  14. Billingsley P.: Ergodic Theory and information. Wiley, New York (1965)

    MATH  Google Scholar 

  15. Chainais P., Abry P., Riedi R.: On non scale invariant infinitely divisible cascades. IEEE Trans. Info. Th. 51, 1063–1083 (2005)

    Article  MathSciNet  Google Scholar 

  16. Collet P., Koukiou F.: Large deviations for multiplicative chaos. Commun. Math. Phys. 147, 329–342 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Durand A.: Random wavelet series based on a tree-indexed Markov chain. Commun. Math. Phys. 283, 451–477 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Durrett R., Liggett R.: Fixed points of the smoothing transformation. Z. Wahrsch. verw. Gebiete 64, 275–301 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Falconer K.J.: The multifractal spectrum of statistically self-similar measures. J. Theor. Prob. 7, 681–702 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Falconer K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd Edition. Wiley, New York (2003)

    MATH  Google Scholar 

  21. Frisch, U., Parisi, G.: Fully developed turbulence and intermittency in turbulence, and predictability in geophysical fluid dynamics and climate dymnamics, International School of Physics “Enrico Fermi”, Course 88, edited by M. Ghil, Amsterdam: North Holland, 1985, p. 84

  22. Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I.: Fractal measures and their singularities: the characterisation of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Hentschel H.G., Procaccia I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435–444 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Holley R., Waymire E.C.: Multifractal dimensions and scaling exponents for strongly bounded random fractals. Ann. Appl. Probab. 2, 819–845 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jaffard S.: Exposants de Hölder en des points donnés et coefficients d’ondelettes. C. R. Acad. Sci. Paris 308(Série I), 79–81 (1989)

    MATH  MathSciNet  Google Scholar 

  26. Jaffard S.: The spectrum of singularities of Riemann’s function. Rev. Math. Ibero-Amer. 12, 441–460 (1996)

    MATH  MathSciNet  Google Scholar 

  27. Jaffard, S.: Multifractal formalism for functions. I. Results valid for all functions. II Self-similar functions, SIAM J. Math. Anal. 28, 944–970 & 971–998 (1997)

  28. Jaffard S.: Oscillations spaces: Properties and applications to fractal and multifractal functions. J. Math. Phys. 39(8), 4129–4141 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Jaffard S.: On lacunary wavelet series. Ann. Appl. Prob. 10(1), 313–329 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jaffard S.: On the Frisch-Parisi Conjecture. J. Math. Pures Appl. 79(6), 525–552 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jaffard, S.: Wavelets techniques in multifractal analysis. In: Lapidus, M., Frankenhuijsen, M.V., ed. Fractal geometry and applications: a jubilee of Benoî t Mandelbrot, Proc. Symp. Pure Math. 72(2), Providencce, RI: Amer. Math. Soc., 2004, pp. 91–151

  32. Jaffard S., Mandelbrot B.B.: Local regularity of nonsmooth wavelet expansions and application to the Polya function. Adv. Math. 120, 265–282 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Jaffard S., Mandelbrot B.B.: Peano-Polya motions, when time is intrinsic or binomial (uniform or multifractal). Math. Intelligencer 19, 21–26 (1997)

    MATH  MathSciNet  Google Scholar 

  34. Jaffard S., Meyer Y.: On the pointwise regularity of functions in critical Besov spaces. J. Funct. Anal. 175, 415–434 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kahane J.P., Peyrière J.: Sur certaines martingales de B. Mandelbrot. Adv. Math. 22, 131–145 (1976)

    Article  MATH  Google Scholar 

  36. Lau K.S., Ngai S.M.: Multifractal measures and a weak separation condition. Adv. Math. 141, 45–96 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Liu Q.: On generalized multiplicative cascades. Stoch. Proc. Appl. 86, 263–286 (2000)

    Article  MATH  Google Scholar 

  38. Liu Q.: Asymptotic Properties and Absolute Continuity of Laws Stable by Random Weighted Mean. Stoch. Proc. Appl. 95, 83–107 (2001)

    Article  MATH  Google Scholar 

  39. Mandelbrot B.B.: Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier. J. Fluid. Mech. 62, 331–358 (1974)

    Article  MATH  ADS  Google Scholar 

  40. Mandelbrot B.B.: New “anomalous” multiplicative multifractals: left sided f(α) and the modelling of DLA. Phys. A 168(1), 95–111 (1990)

    Article  MathSciNet  Google Scholar 

  41. Mandelbrot B.B., Evertsz C.J.G., Hayakawa Y.: Exactly self-similar left-sided multifractal measures. Phys. Rew. A 42, 4528–4536 (1990)

    Article  ADS  Google Scholar 

  42. Mandelbrot B.B.: Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer, Berlin-Heidelberg-New York (1997)

    MATH  Google Scholar 

  43. Mandelbrot B.B.: Gaussian Self-Affinity and Fractals. Springer, Berlin-Heidelberg-New York (2002)

    MATH  Google Scholar 

  44. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. In: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44, Cambridge: Cambridge University Press, 1995

  45. Molchan G.M.: Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681–702 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Muzy J.F., Bacry E., Arneodo A.: Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 3515–3518 (1991)

    Article  ADS  Google Scholar 

  47. Olsen L.: A multifractal formalism. Adv. Math. 116, 92–195 (1995)

    Article  MathSciNet  Google Scholar 

  48. Pesin Y.: Dimension theory in dynamical systems: Contemporary views and applications. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago, IL (1997)

    Google Scholar 

  49. Peyrière J.: A Singular Random Measure Generated by Spliting [0, 1]. Z. Wahrsch. verw. Gebiete 47, 289–297 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  50. Rényi, A.: Probability Theory, Amsterdam: North-Holland, 1970

  51. Riedi R., Mandelbrot B.B.: Multifractal formalism for infinite multinomial measures. Adv. Appl. Math. 16(2), 132–150 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  52. Sendov Bl.: On the theorem and constants of H. Whitney. Constr. Approx. 3, 1–11 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  53. Seuret S.: On multifractality and time subordination for continuous functions. Adv. Math. 220, 936–963 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Whitney H.: On functions with bounded nth differences. J. Math. Pures Appl. 36, 67–95 (1957)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Barral.

Additional information

Communicated by S. Smirnov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barral, J., Jin, X. Multifractal Analysis of Complex Random Cascades. Commun. Math. Phys. 297, 129–168 (2010). https://doi.org/10.1007/s00220-010-1030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1030-y

Keywords

Navigation