Abstract
We achieve the multifractal analysis of a class of complex valued statistically self-similar continuous functions. For we use multifractal formalisms associated with pointwise oscillation exponents of all orders. Our study exhibits new phenomena in multifractal analysis of continuous functions. In particular, we find examples of statistically self-similar such functions obeying the multifractal formalism and for which the support of the singularity spectrum is the whole interval [0, ∞].
Similar content being viewed by others
References
Arbeiter M., Patszchke N.: Random self-similar multifractals. Math. Nachr. 181, 5–42 (1996)
Arneodo A., Bacry E., Muzy J.-F.: Random cascades on wavelet dyadic trees. J. Math. Phys. 39, 4142–4164 (1998)
Aubry J.M., Jaffard S.: Random wavelet series. Commun. Math. Phys. 227, 483–514 (2002)
Bacry E., Muzy J.-F.: Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236, 449–475 (2003)
Barral J.: Continuity of the multifractal spectrum of a random statistically self-similar measure. J. Theo. Probab. 13, 1027–1060 (2000)
Barral J.: Generalized vector multiplicative cascades. Adv. Appl. Prob. 33, 874–895 (2001)
Barral, J., Jin, X., Mandelbrot, B.B.: Convergence of complex multiplicative cascades. Ann. Appl. Proba. (to appear)
Barral, J., Mandelbrot, B.B.: Random Multiplicative Multifractal Measures I, II, III. In: Lapidus, M., Frankenhuijsen, M.V. ed. Fractal geometry and applications: a jubilee of Benoî t Mandelbrot, Proc. Symp. Pure Math. 72(2), Providence, RI: Amer. Math. Soc., 2004, pp. 3–90
Barral J., Seuret S.: From multifractal measures to multifractal wavelet series. J. Fourier Anal. Appl. 11, 589–614 (2005)
Bedford T.: Hölder exponents and box dimension for self-affine fractal functions. Fractal approximation. Constr. Approx. 5, 33–48 (1989)
Ben Slimane M.: Multifractal formalism and anisotropic selfsimilar functions. Math. Proc. Camb. Phil. Soc. 124, 329–363 (1998)
Biggins J.D.: Uniform Convergence of Martingales in the Branching Random Walk. Ann. Prob. 20, 137–151 (1992)
Brown G., Michon G., Peyrière J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–790 (1992)
Billingsley P.: Ergodic Theory and information. Wiley, New York (1965)
Chainais P., Abry P., Riedi R.: On non scale invariant infinitely divisible cascades. IEEE Trans. Info. Th. 51, 1063–1083 (2005)
Collet P., Koukiou F.: Large deviations for multiplicative chaos. Commun. Math. Phys. 147, 329–342 (1992)
Durand A.: Random wavelet series based on a tree-indexed Markov chain. Commun. Math. Phys. 283, 451–477 (2008)
Durrett R., Liggett R.: Fixed points of the smoothing transformation. Z. Wahrsch. verw. Gebiete 64, 275–301 (1983)
Falconer K.J.: The multifractal spectrum of statistically self-similar measures. J. Theor. Prob. 7, 681–702 (1994)
Falconer K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd Edition. Wiley, New York (2003)
Frisch, U., Parisi, G.: Fully developed turbulence and intermittency in turbulence, and predictability in geophysical fluid dynamics and climate dymnamics, International School of Physics “Enrico Fermi”, Course 88, edited by M. Ghil, Amsterdam: North Holland, 1985, p. 84
Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I.: Fractal measures and their singularities: the characterisation of strange sets. Phys. Rev. A 33, 1141–1151 (1986)
Hentschel H.G., Procaccia I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435–444 (1983)
Holley R., Waymire E.C.: Multifractal dimensions and scaling exponents for strongly bounded random fractals. Ann. Appl. Probab. 2, 819–845 (1992)
Jaffard S.: Exposants de Hölder en des points donnés et coefficients d’ondelettes. C. R. Acad. Sci. Paris 308(Série I), 79–81 (1989)
Jaffard S.: The spectrum of singularities of Riemann’s function. Rev. Math. Ibero-Amer. 12, 441–460 (1996)
Jaffard, S.: Multifractal formalism for functions. I. Results valid for all functions. II Self-similar functions, SIAM J. Math. Anal. 28, 944–970 & 971–998 (1997)
Jaffard S.: Oscillations spaces: Properties and applications to fractal and multifractal functions. J. Math. Phys. 39(8), 4129–4141 (1998)
Jaffard S.: On lacunary wavelet series. Ann. Appl. Prob. 10(1), 313–329 (2000)
Jaffard S.: On the Frisch-Parisi Conjecture. J. Math. Pures Appl. 79(6), 525–552 (2000)
Jaffard, S.: Wavelets techniques in multifractal analysis. In: Lapidus, M., Frankenhuijsen, M.V., ed. Fractal geometry and applications: a jubilee of Benoî t Mandelbrot, Proc. Symp. Pure Math. 72(2), Providencce, RI: Amer. Math. Soc., 2004, pp. 91–151
Jaffard S., Mandelbrot B.B.: Local regularity of nonsmooth wavelet expansions and application to the Polya function. Adv. Math. 120, 265–282 (1996)
Jaffard S., Mandelbrot B.B.: Peano-Polya motions, when time is intrinsic or binomial (uniform or multifractal). Math. Intelligencer 19, 21–26 (1997)
Jaffard S., Meyer Y.: On the pointwise regularity of functions in critical Besov spaces. J. Funct. Anal. 175, 415–434 (2000)
Kahane J.P., Peyrière J.: Sur certaines martingales de B. Mandelbrot. Adv. Math. 22, 131–145 (1976)
Lau K.S., Ngai S.M.: Multifractal measures and a weak separation condition. Adv. Math. 141, 45–96 (1999)
Liu Q.: On generalized multiplicative cascades. Stoch. Proc. Appl. 86, 263–286 (2000)
Liu Q.: Asymptotic Properties and Absolute Continuity of Laws Stable by Random Weighted Mean. Stoch. Proc. Appl. 95, 83–107 (2001)
Mandelbrot B.B.: Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier. J. Fluid. Mech. 62, 331–358 (1974)
Mandelbrot B.B.: New “anomalous” multiplicative multifractals: left sided f(α) and the modelling of DLA. Phys. A 168(1), 95–111 (1990)
Mandelbrot B.B., Evertsz C.J.G., Hayakawa Y.: Exactly self-similar left-sided multifractal measures. Phys. Rew. A 42, 4528–4536 (1990)
Mandelbrot B.B.: Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer, Berlin-Heidelberg-New York (1997)
Mandelbrot B.B.: Gaussian Self-Affinity and Fractals. Springer, Berlin-Heidelberg-New York (2002)
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. In: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44, Cambridge: Cambridge University Press, 1995
Molchan G.M.: Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681–702 (1996)
Muzy J.F., Bacry E., Arneodo A.: Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 3515–3518 (1991)
Olsen L.: A multifractal formalism. Adv. Math. 116, 92–195 (1995)
Pesin Y.: Dimension theory in dynamical systems: Contemporary views and applications. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago, IL (1997)
Peyrière J.: A Singular Random Measure Generated by Spliting [0, 1]. Z. Wahrsch. verw. Gebiete 47, 289–297 (1979)
Rényi, A.: Probability Theory, Amsterdam: North-Holland, 1970
Riedi R., Mandelbrot B.B.: Multifractal formalism for infinite multinomial measures. Adv. Appl. Math. 16(2), 132–150 (1995)
Sendov Bl.: On the theorem and constants of H. Whitney. Constr. Approx. 3, 1–11 (1987)
Seuret S.: On multifractality and time subordination for continuous functions. Adv. Math. 220, 936–963 (2009)
Whitney H.: On functions with bounded nth differences. J. Math. Pures Appl. 36, 67–95 (1957)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Smirnov
Rights and permissions
About this article
Cite this article
Barral, J., Jin, X. Multifractal Analysis of Complex Random Cascades. Commun. Math. Phys. 297, 129–168 (2010). https://doi.org/10.1007/s00220-010-1030-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-010-1030-y