Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper derives the multi-innovation extended stochastic gradient algorithm for controlled autoregressive moving average models by expanding the scalar innovation to an innovation vector and analyzes its performance in detail. Four convergence theorems are given for the multi-innovation extended stochastic gradient algorithm to show that the parameter estimates converge to their true values under the weak persistent excitation condition. The simulation results show that the proposed algorithm can produce more accurate parameter estimates than the traditional extended stochastic gradient algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ding, T. Chen, Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Autom. Control 50(9), 1436–1441 (2005)

    Article  MathSciNet  Google Scholar 

  2. F. Ding, T. Chen, Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Ding, D.Y. Xiao, T. Ding, Multi-innovation stochastic gradient identification method. Control Theory Appl. 20(6), 870–874 (2003), (in Chinese)

    MathSciNet  Google Scholar 

  4. F. Ding, H.B. Chen, M. Li, Multi-innovation least squares identification methods based on the auxiliary model for MISO systems. Appl. Math. Comput. 187(2), 658–668 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Ding, Y. Shi, T. Chen, Amendments to “Performance analysis of estimation algorithms of non-stationary ARMA processes”. IEEE Trans. Signal Process. 56(10-1), 4983–4984 (2008)

    Article  Google Scholar 

  6. F. Ding, H.Z. Yang, F. Liu, Performance analysis of stochastic gradient algorithms under weak conditions. Sci. China Ser. F Inf. Sci. 51(9), 1269–1280 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Ding, P.X. Liu, G. Liu, Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises. Signal Process. 89(10), 1883–1890 (2009)

    Article  Google Scholar 

  8. G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Prentice-Hall, Englewood Cliffs, 1984)

    MATH  Google Scholar 

  9. L.L. Han, F. Ding, Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digit. Signal Process. 19(4), 545–554 (2009)

    Article  Google Scholar 

  10. L.L. Han, F. Ding, Identification for multirate multi-input systems using the multi-innovation identification theory. Comput. Math. Appl. 57(9), 1438–1449 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Ljung, System Identification: Theory for the User, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1999)

    Google Scholar 

  12. D.Q. Wang, F. Ding, Auxiliary models based multi-innovation generalized extended stochastic gradient algorithms. Control Decis. 23(9), 999–1003 (2008), 1010 (in Chinese)

    MATH  MathSciNet  Google Scholar 

  13. D.Q. Wang, F. Ding, Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems. Digit. Signal Process. 20(3), 750–762 (2010)

    Article  MathSciNet  Google Scholar 

  14. C.Z. Wei, Adaptive prediction by least squares prediction in stochastic regression models. Ann. Stat. 15(4), 1667–1682 (1987)

    Article  MATH  Google Scholar 

  15. L. Yu, F. Ding, Multi-innovation stochastic gradient identification methods for CARMA systems. Sci. Technol. Eng. 8(2), 473–475 (2008), (in Chinese)

    MathSciNet  Google Scholar 

  16. L. Yu, F. Ding, J.B. Zhang, Convergence of multi-innovation stochastic gradient identification methods. Sci. Technol. Eng. 7(21), 5474–5478 (2007), 5484 (in Chinese)

    Google Scholar 

  17. L. Yu, F. Ding, P.X. Liu, On consistency of multi-innovation extended stochastic gradient algorithms with colored noises, in Proceedings of IEEE International Instrumentation and Measurement Technology Conference, Victoria, Canada, 12–16 May 2008, pp. 1695–1700

  18. L. Yu, Y.J. Liu, F. Ding, Convergence of multi-innovation extended stochastic gradient parameter estimation for CARMA models. Syst. Eng. Electron. 31(6), 1446–1449 (2009), (in Chinese)

    Google Scholar 

  19. J.B. Zhang, F. Ding, Y. Shi, Self-tuning control based on multi-innovation stochastic gradient parameter estimation. Syst. Control. Lett. 58(1), 69–75 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ding.

Additional information

This work was supported in part by the National Natural Science Foundation of China (60973043), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry) and the Program for Innovative Research Team of Jiangnan University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yu, L. & Ding, F. Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis. Circuits Syst Signal Process 29, 649–667 (2010). https://doi.org/10.1007/s00034-010-9174-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9174-8

Keywords

Navigation