Abstract
We present constraints on decaying and annihilating dark matter (DM) in the 4 keV to 10 GeV mass range, using published results from the satellites HEAO-1, INTEGRAL, COMPTEL, EGRET, and the Fermi Gamma-ray Space Telescope. We derive analytic expressions for the gamma-ray spectra from various DM decay modes, and find lifetime constraints in the range 1024 − 1028 sec, depending on the DM mass and decay mode. We map these constraints onto the parameter space for a variety of models, including a hidden photino that is part of a kinetically mixed hidden sector, a gravitino with R-parity violating decays, a sterile neutrino, DM with a dipole moment, and a dark pion. The indirect constraints on sterile-neutrino and hidden-photino DM are found to be more powerful than other experimental or astrophysical probes in some parts of parameter space. While our focus is on decaying DM, we also present constraints on DM annihilation to electron-positron pairs. We find that if the annihilation is p-wave suppressed, the galactic diffuse constraints are, depending on the DM mass and velocity at recombination, more powerful than the constraints from the Cosmic Microwave Background.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, MeV dark matter: has it been detected?, Phys. Rev. Lett. 92 (2004) 101301 [astro-ph/0309686] [INSPIRE].
C. Boehm, P. Fayet and J. Silk, Light and heavy dark matter particles, Phys. Rev. D 69 (2004)101302 [hep-ph/0311143] [INSPIRE].
M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008)53 [arXiv:0711.4866] [INSPIRE].
D. Hooper and K.M. Zurek, A natural supersymmetric model with mev dark matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].
J.L. Feng and J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].
D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009)115016 [arXiv:0901.4117] [INSPIRE].
R. Essig, J. Kaplan, P. Schuster and N. Toro, On the origin of light dark matter species, arXiv:1004.0691 [INSPIRE].
A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].
R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e+e− colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].
F.J. Petriello, S. Quackenbush and K.M. Zurek, The invisible Z′ at the CERN LHC, Phys. Rev. D 77 (2008) 115020 [arXiv:0803.4005] [INSPIRE].
Y. Gershtein, F. Petriello, S. Quackenbush and K.M. Zurek, Discovering hidden sectors with mono-photon Z′ o searches, Phys. Rev. D 78 (2008) 095002 [arXiv:0809.2849] [INSPIRE].
J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].
P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011)014028 [arXiv:1103.0240] [INSPIRE].
R. Essig, J. Mardon, M. Papucci, T. Volansky, Y. Zhong, Constraining light dark matter with low-energy e + e − colliders, to appear.
R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].
P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor probes of light dark matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].
P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].
P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].
MiniBooNE collaboration, R. Dharmapalan et al., Low mass WIMP searches with a neutrino experiment: a proposal for further MiniBOONE running, arXiv:1211.2258 [INSPIRE].
E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, arXiv:1307.6554 [INSPIRE].
M.D. Diamond and P. Schuster, Searching for light dark matter with the SLAC millicharge experiment, arXiv:1307.6861 [INSPIRE].
S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on Dark Matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].
T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB constraints on WIMP annihilation: energy absorption during the recombination epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].
D.P. Finkbeiner, S. Galli, T. Lin and T.R. Slatyer, Searching for dark matter in the CMB: a compact parameterization of energy injection from new physics, Phys. Rev. D 85 (2012) 043522 [arXiv:1109.6322] [INSPIRE].
S. Galli, F. Iocco, G. Bertone and A. Melchiorri, Updated CMB constraints on dark matter annihilation cross-sections, Phys. Rev. D 84 (2011) 027302 [arXiv:1106.1528] [INSPIRE].
LAT collaboration, M. Ackermann et al., Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].
LAT collaboration, M. Ackermann et al., Constraints on the galactic halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].
G.A. Gomez-Vargas et al., Constraints on WIMP annihilation for contracted dark matter in the inner galaxy with the Fermi-LAT, arXiv:1308.3515 [INSPIRE].
M. Papucci and A. Strumia, Robust implications on dark matter from the first FERMI sky gamma map, JCAP 03 (2010) 014 [arXiv:0912.0742] [INSPIRE].
M. Cirelli, P. Panci and P.D. Serpico, Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi, Nucl. Phys. B 840 (2010) 284 [arXiv:0912.0663] [INSPIRE].
G.D. Kribs and I. Rothstein, Bounds on longlived relics from diffuse gamma-ray observations, Phys. Rev. D 55 (1997) 4435 [Erratum ibid. D 56 (1997) 1822] [hep-ph/9610468] [INSPIRE].
H. Yuksel and M.D. Kistler, Circumscribing late dark matter decays model independently, Phys. Rev. D 78 (2008) 023502 [arXiv:0711.2906] [INSPIRE].
J.A. Cembranos and L.E. Strigari, Diffuse MeV gamma-rays and galactic 511 keV line from decaying WIMP dark matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE].
A. Boyarsky and O. Ruchayskiy, Bounds on Light Dark Matter, arXiv:0811.2385 [INSPIRE].
G. Bertone, W. Buchmüller, L. Covi and A. Ibarra, Gamma-rays from decaying dark matter, JCAP 11 (2007) 003 [arXiv:0709.2299] [INSPIRE].
A. Boyarsky, J. Nevalainen and O. Ruchayskiy, Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor, Astron. Astrophys. 471 (2007) 51 [astro-ph/0610961] [INSPIRE].
A. Boyarsky, J.W. den Herder, A. Neronov and O. Ruchayskiy, Search for the light dark matter with an X-ray spectrometer, Astropart. Phys. 28 (2007) 303 [astro-ph/0612219] [INSPIRE].
A. Boyarsky, D. Malyshev, A. Neronov and O. Ruchayskiy, Constraining DM properties with SPI, Mon. Not. Roy. Astron. Soc. 387 (2008) 1345 [arXiv:0710.4922] [INSPIRE].
G. Gomez-Vargas et al., CLUES on Fermi-LAT prospects for the extragalactic detection of munuSSM gravitino Dark Matter, JCAP 02 (2012) 001 [arXiv:1110.3305] [INSPIRE].
F. Stecker and A. Tylka, Spectra, fluxes and observability of gamma-rays from dark matter annihilation in the galaxy, Astrophys. J. 343 (1989) 169 [INSPIRE].
F. Stecker, The cosmic gamma-ray background from the annihilation of primordial stable neutral heavy leptons, Astrophys. J. 223 (1978) 1032 [INSPIRE].
A.R. Pullen, R.-R. Chary and M. Kamionkowski, Search with EGRET for a gamma ray line from the galactic center, Phys. Rev. D 76 (2007) 063006 [Erratum ibid. D 83 (2011) 029904] [astro-ph/0610295] [INSPIRE].
E. Masso and R. Toldra, Photon spectrum produced by the late decay of a cosmic neutrino background, Phys. Rev. D 60 (1999) 083503 [astro-ph/9903397] [INSPIRE].
K. Abazajian, G.M. Fuller and W.H. Tucker, Direct detection of warm dark matter in the X-ray, Astrophys. J. 562 (2001) 593 [astro-ph/0106002] [INSPIRE].
A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Constraints on sterile neutrino as a dark matter candidate from the diffuse x-ray background, Mon. Not. Roy. Astron. Soc. 370 (2006) 213 [astro-ph/0512509] [INSPIRE].
A. Kusenko, Sterile neutrinos: The Dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].
A. Palazzo, D. Cumberbatch, A. Slosar and J. Silk, Sterile neutrinos as subdominant warm dark matter, Phys. Rev. D 76 (2007) 103511 [arXiv:0707.1495] [INSPIRE].
A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Phys. Rev. D 74 (2006) 103506 [astro-ph/0603368] [INSPIRE].
S. Riemer-Sorensen, S.H. Hansen and K. Pedersen, Sterile neutrinos in the Milky Way: observational constraints, Astrophys. J. 644 (2006) L33 [astro-ph/0603661] [INSPIRE].
C.R. Watson, J.F. Beacom, H. Yuksel and T.P. Walker, Direct X-ray constraints on sterile neutrino warm dark matter, Phys. Rev. D 74 (2006) 033009 [astro-ph/0605424] [INSPIRE].
K.N. Abazajian, M. Markevitch, S.M. Koushiappas and R.C. Hickox, Limits on the radiative decay of sterile neutrino dark matter from the unresolved cosmic and soft X-ray backgrounds, Phys. Rev. D 75 (2007) 063511 [astro-ph/0611144] [INSPIRE].
H. Yuksel, J.F. Beacom and C.R. Watson, Strong upper limits on sterile neutrino warm dark matter, Phys. Rev. Lett. 101 (2008) 121301 [arXiv:0706.4084] [INSPIRE].
A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov and I. Tkachev, Where to find a dark matter sterile neutrino?, Phys. Rev. Lett. 97 (2006) 261302 [astro-ph/0603660] [INSPIRE].
A. Boyarsky, O. Ruchayskiy and M. Markevitch, Constraints on parameters of radiatively decaying dark matter from the galaxy cluster 1E0657-56, Astrophys. J. 673 (2008) 752 [astro-ph/0611168] [INSPIRE].
A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].
J.F. Navarro, C.S. Frenk and S.D. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].
J.F. Navarro, C.S. Frenk and S.D. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
S. Kazantzidis et al., Density profiles of cold dark matter substructure: implications for the missing satellites problem, Astrophys. J. 608 (2004) 663 [astro-ph/0312194] [INSPIRE].
J.N. Bahcall and R.M. Soneira, The universe at faint magnitudes. I — Models for the galaxy and the predicted star counts, Astrophys. J. Suppl. 44 (1980) 73.
J. Einasto, Kinematics and dynamics of stellar systems, Trudy Inst. Astrofiz. Alma-Ata 5 (1965)87.
D. Gruber, J. Matteson, L. Peterson and G. Jung, The spectrum of diffuse cosmic hard x-rays measured with heao-1, astro-ph/9903492 [INSPIRE].
L. Bouchet et al., INTEGRAL SPI all-sky view in soft gamma rays: study of point source and galactic diffuse emissions, arXiv:0801.2086 [INSPIRE].
S.C. Kappadath et al., The preliminary cosmic diffuse ray spectrum from 800 keV to 30 MeV measured with COMPTEL, in the proceedings of the 24th International Cosmic-Ray Conference, August 28-September 8, Rome, Italy (1995).
S.C. Kappadath, Measurement of the cosmic diffuse gamma-ray spectrum from 800 keV to 30 MeV, Ph.D. Thesis, University of New Hampshire, U.S.A (1998).
A.W. Strong et al., Diffuse galactic hard X-ray and low-energy gamma-ray continuum, Astron. Astrophys. 120 (1996) 381.
A.W. Strong, I.V. Moskalenko and O. Reimer, Evaluation of models for diffuse continuum gamma-rays in EGRET range, astro-ph/0306346 [INSPIRE].
A.W. Strong, I.V. Moskalenko and O. Reimer, Diffuse galactic continuum gamma rays. A model compatible with EGRET data and cosmic-ray measurements, Astrophys. J. 613 (2004)962 [astro-ph/0406254] [INSPIRE].
Fermi-LAT collaboration, Fermi-LAT observations of the diffuse gamma-ray emission: implications for cosmic rays and the interstellar medium, Astrophys. J. 750 (2012) 3 [arXiv:1202.4039] [INSPIRE].
P. Ullio, L. Bergstrom, J. Edsjo and C.G. Lacey, Cosmological dark matter annihilations into gamma-rays — A closer look, Phys. Rev. D 66 (2002) 123502 [astro-ph/0207125] [INSPIRE].
J.E. Taylor and J. Silk, The clumpiness of cold dark matter: implications for the annihilation signal, Mon. Not. Roy. Astron. Soc. 339 (2003) 505 [astro-ph/0207299] [INSPIRE].
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].
D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009)050 [arXiv:0904.2567] [INSPIRE].
J.T. Ruderman and T. Volansky, Decaying into the hidden sector, JHEP 02 (2010) 024 [arXiv:0908.1570] [INSPIRE].
B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
P. Galison and A. Manohar, Two Z’s or not two Z’s?, Phys. Lett. B 136 (1984) 279 [INSPIRE].
J.T. Ruderman and T. Volansky, Searching for smoking gun signatures of decaying dark matter, arXiv:0907.4373 [INSPIRE].
T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric dark matter from a GeV hidden sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].
J. Mardon, Y. Nomura, D. Stolarski and J. Thaler, Dark matter signals from cascade annihilations, JCAP 05 (2009) 016 [arXiv:0901.2926] [INSPIRE].
J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].
APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011)191804 [arXiv:1108.2750] [INSPIRE].
A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].
BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions \( Y \) → γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013)190 [arXiv:1302.3884] [INSPIRE].
J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].
J. Redondo and M. Postma, Massive hidden photons as lukewarm dark matter, JCAP 02 (2009)005 [arXiv:0811.0326] [INSPIRE].
J. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [INSPIRE].
R.E. Shrock, Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories, Nucl. Phys. B 206 (1982) 359 [INSPIRE].
O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].
S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].
A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].
K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [INSPIRE].
A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [INSPIRE].
A. Dolgov and F. Villante, BBN bounds on active sterile neutrino mixing, Nucl. Phys. B 679 (2004)261 [hep-ph/0308083] [INSPIRE].
K. Kainulainen, J. Maalampi and J. Peltoniemi, Inert neutrinos in supernovae, Nucl. Phys. B 358 (1991) 435 [INSPIRE].
T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].
T. Moroi, Effects of the gravitino on the inflationary universe, hep-ph/9503210 [INSPIRE].
F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000)388 [hep-ph/0005214] [INSPIRE].
G. Moreau and M. Chemtob, R-parity violation and the cosmological gravitino problem, Phys. Rev. D 65 (2002) 024033 [hep-ph/0107286] [INSPIRE].
W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE].
L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
C. Cheung, G. Elor and L. Hall, Gravitino freeze-in, Phys. Rev. D 84 (2011) 115021 [arXiv:1103.4394] [INSPIRE].
L.J. Hall, J.T. Ruderman and T. Volansky, A cosmological upper bound on superpartner masses, arXiv:1302.2620 [INSPIRE].
P. Langacker, The standard model and beyond, CRC Press, Boca Raton, U.S.A. (2010).
J.F. Beacom, N.F. Bell and G. Bertone, Gamma-ray constraint on Galactic positron production by MeV dark matter, Phys. Rev. Lett. 94 (2005) 171301 [astro-ph/0409403] [INSPIRE].
B.S. Hensley, V. Pavlidou and J.M. Siegal-Gaskins, Novel techniques for decomposing diffuse backgrounds, Mon. Not. Roy. Astron. Soc. 433 (2013) 591 [arXiv:1210.7239] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1309.4091
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Essig, R., Kuflik, E., McDermott, S.D. et al. Constraining light dark matter with diffuse X-ray and gamma-ray observations. J. High Energ. Phys. 2013, 193 (2013). https://doi.org/10.1007/JHEP11(2013)193
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2013)193