Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Bibliography
M. B. Barban, "Linnik's ‘large sieve’ and a limit theorem for the class number of ideals of an imaginary quadratic field," Izk. Nauk SSSR, Ser. Mat. [1962], 573–78.
Birch and Swinnerton-Dyer, "Elliptic curves and modular functions," Modular functions of one variable, Springer Lecture Notes 476 [1975], 2–32.
J. Coates and A. Wiles, "On the conjecture of Birch and Swinnerton-Dyer," Inventiones Math. 39, [1977], 223–251.
D. Goldfeld and C. Viola, "Mean values of L-functions associated to elliptic, Fermat and other curves at the center of the critical strip," to appear J. Number Theory [1979].
E. Hecke, "Neue Herleitung der Klassenzahlrelationen von Hurwitz und Kronecker," Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse [1926], 244–249.
A. F. Lavrik, "Functional equations of Dirichlet functions," Soviet Math. Dokl. 7 [1966], 1471–1473.
R. A. Rankin, "Contributions to the theory of Ramanujan's function τ(n) and similar arithmetic functions," Proc. Cambridge Philos. Soc. 35 [1939], 357–375.
G. Shimura, Arithmetic theory of automorphic functions, Princeton Univ. Press [1971], 183–184.
T. Shintani, "On zeta functions associated with prehomogeneous vector spaces," Seminar on Modern Methods in Number Theory, Inst. Statist. Math. Tokyo [1971], paper no. 40.
B. V. Stepanov, "On the mean value of the kth power of the number of classes for an imaginary quadratic field," Dokl. Akad. Nauk SSSR 124 [1959], 984–986.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1979 Springer-Verlag
About this chapter
Cite this chapter
Goldfeld, D. (1979). Conjectures on elliptic curves over quadratic fields. In: Nathanson, M.B. (eds) Number Theory Carbondale 1979. Lecture Notes in Mathematics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062705
Download citation
DOI: https://doi.org/10.1007/BFb0062705
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-09559-0
Online ISBN: 978-3-540-34852-8
eBook Packages: Springer Book Archive