Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Glass transitions in starch, gluten and bread as measured

Dielectric spectroscopy and TMA methods

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Dielectric Spectroscopy (DS) and Thermomechanical Analysis (TMA) were used to identity the glass transition temperature (T g) of native wheat starch, vital wheat gluten and a commercial bread, in response to changes in moisture content. An open-ended coaxial probe technique was used to measure the permittivity or dielectric constant (ɛ′) and the loss factor (ɛ″) as functions of moisture, for 2.45 GHz frequency, at constant density and temperature. Plots of ɛ′ and ɛ″ as functions of moisture content showed dramatic changes in mobility-based dielectric properties, which occur upon transition from the glassy solid to the rubbery liquid state. The modified TMA method can measure the change in viscoelastic properties aroundT g. This study further confirms that synthetic polymer science principles can be applied to food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R. E. Mudgett, Microwaves in the Food Processing Industry, ed. R. DeCateur, Academic Press, New York 1985, p. 15.

    Google Scholar 

  2. L. Slade and H. Levine, Advances in Food and Nutrition Research, Vol. 38, eds. J. E. Kinsella and S. L. Taylor, Academic Press, San Diego 1995, p. 103.

    Google Scholar 

  3. J. Zuercher, L. Hoppie, R. Lade, S. Srinivasan and D. Misra, J. Microwave Power, 25 (1990) 161.

    Google Scholar 

  4. S. L. Umbach, E. A. Davis, J. Gordon and P. T. Callaghan, Cereal Chemistry, 69 (1992) 637.

    Google Scholar 

  5. B. D. Roebuck and S. A. Goldblith, J. Food Sci., 37 (1972) 199.

    Google Scholar 

  6. G. P. DeLoor, J. Microwave Power, 3 (1968) 67.

    Google Scholar 

  7. P. Abadie, R. Charbonnière, A. Gidel, P. Girard and A. Guilbot, J. Chim. Phys., 50 (1953) C46.

    Google Scholar 

  8. L. C. Haynes and J. P. Locke, J. Microwave Power Electromagnetic Energy, 30 (1995) 125.

    Google Scholar 

  9. R. C. Hoseney, P. A. Seib and W. Dong, AACC Annual Meeting, Minneapolis, MN, abs. #59 (1992).

  10. W. Dong, M. S. Thesis, Kansas State University, Manhattan, KS (1992).

    Google Scholar 

  11. A. Aynie, M. LeMeste and M. Isnard, 53rd Easter School — The science and technology of the glassy state in foods, Nottingham University, UK (1992) abs. p2.

    Google Scholar 

  12. A. M. Cocero, H. Madeka, J. L. Kokini, AACC Annual Meeting, Minneapolis, MN, abs. #63 (1992).

  13. A. M. Cocero, H. Madeka and J. L. Kokini, Theoretical and Applied Rheology, eds. P. Moldenaers and R. Keunings, Elsevier, Amsterdam 1992, p. 699.

    Google Scholar 

  14. G. Attenburrow and A. P. Davies, The Glassy State in Foods, eds. J. M. V. Blanshard and P. J. Lillford, Nottingham Univ. Press. Loughborough 1993, p. 317.

    Google Scholar 

  15. C. G. Biliaderis, C. M. Page, T. J. Maurice and B. O. Juliano, J. Agric. Food Chem., 34 (1986) 6.

    Google Scholar 

  16. M. LeMeste, V. T. Huang, J. Panama, G. Anderson and R. Lentz, Cereal Foods World, 37 (1992) 264.

    Google Scholar 

  17. L. M. Hallberg and P. J. Chinachoti, J. Food Sci., 57 (1992) 1201.

    Google Scholar 

  18. G. Q. Jiang, W. H. Wong, E. Y. Raskovich, W. G. Clark, W. A. Hines and J. Sanny, Rev. Sci. Instrum., 64 (1993) 1614.

    Google Scholar 

  19. D. A. d'Avignon, C. C. Hung, M. T. L. Pagel, B. Hart, G. L. Bretthorst and J. J. H. Ackerman, in Water Relationships in Foods, eds. H. Levine and L. Slade, Plenum Press, New York 1991, p. 486.

    Google Scholar 

  20. M. T. Kalichevsky, E. M. Jaroszkiewiez and J. M. V. Blanshard, Int. J. Biol. Macromol., 14 (1992) 257.

    Google Scholar 

  21. M. T. Kalichevsky, E. M. Jaroszkiewiez and J. M. V. Blanshard, Polymer, 34 (1992) 346.

    Google Scholar 

  22. Dr. C. Hoseney, K. Zeleznak and C. S. Lai, Cereal Chemistry, 63 (1986) 285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, V.T., Haynes, L., Levine, H. et al. Glass transitions in starch, gluten and bread as measured. Journal of Thermal Analysis 47, 1289–1298 (1996). https://doi.org/10.1007/BF01992828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992828

Keywords

Navigation