Summary
Suppose all zeros of a polynomialp but one are known to lie in specified circular regions, and the value of the logarithmic derivativep′p −1 is known at a point. What can be said about the location of the remaining zero? This question is answered in the present paper, as well as its generalization where several zeros are missing and the values of some derivatives of the logarithmic derivative are known. A connection with a classical result due to Laguerre is established, and an application to the problem of locating zeros of certain transcendental functions is given. The results are used to construct (i) a version of Newton's method with error bounds, (ii) a cubically convergent algorithm for the simultaneous approximation of all zeros of a polynomial. The algorithms and their theoretical foundation make use of circular arithmetic, an extension, based on the theory of Moebius transformations, of interval arithmetic from the real line to the extended complex plane.
Similar content being viewed by others
Bibliography
Abramowitz, M., Stegun, I. (eds.): Handbook of mathematical functions. New York: Dover 1965.
Henrici, P.: Uniformly convergent algorithms for the simultaneous determination of all zeros of a polynomial. Studies in Numerical Analysis2, 1–8 (1968).
— Methods of search for solving polynomial equations. J Assoc. Comp. Math.17, 273–283 (1970).
—, Gargantini, I.: Uniformly convergent algorithms for the simultaneous approximation of all zeros of a polynomial. Proc. Symp. on Constructive Aspects of the Fundamental Theorem of Algebra (B. Dejon and P. Henrici, eds.), pp. 77–114. London: Wiley-Interscience 1969.
— Watkins, B. O.: Finding zeros of a polynomial by theQ-D algorithm. Communications of the ACM8, 570–574 (1965).
Hille, E.: Analytic function theory, vol. 1. Boston: Ginn 1959.
Laguerre, E.: Sur la résolution des équations numériques. Nouvelles Annales de Mathématiques, sér. 2,17 (1878).=Oeuvres, vol. 1, pp. 48–66. Paris 1898.
Lehmer, D. H.: A machine method for solving polynomial equations. J. Assoc. Comp. Mach.8, 151–162 (1961).
Moore, R. E.: Interval analysis. Englewood Cliffs: Prentice Hall 1966.
Nickel, K.: Über die Notwendigkeit einer Fehlerschrankenarithmetik bei Rechenautomaten. Numer. Math.9, 69–79 (1966).
—: Zeros of polynomials and other topics. Topics in interval analysis (E. Hansen, ed.), pp. 25–34. Oxford: Clarendon Press 1969.
Rokne, J., Lancaster, P.: Complex interval arithmetic. Comm. Assoc. Comp. Mach.14, 111–112 (1971).
Titchmarsh, E. C.: The theory of functions, 2nd ed. Oxford: University Press 1939.
Watson, G. N.: Bessel functions, 2nd ed. Cambridge: University Press 1952.
Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik, II. Fundamentalsatz der Algebra und Grundlagen der Mathematik. Math. Z.20, 131–150 (1924).=Ges. Werke2, 444–452 (1968).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gargantini, I., Henrici, P. Circular arithmetic and the determination of polynomial zeros. Numer. Math. 18, 305–320 (1971). https://doi.org/10.1007/BF01404681
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01404681