Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Circular arithmetic and the determination of polynomial zeros

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Suppose all zeros of a polynomialp but one are known to lie in specified circular regions, and the value of the logarithmic derivativep′p −1 is known at a point. What can be said about the location of the remaining zero? This question is answered in the present paper, as well as its generalization where several zeros are missing and the values of some derivatives of the logarithmic derivative are known. A connection with a classical result due to Laguerre is established, and an application to the problem of locating zeros of certain transcendental functions is given. The results are used to construct (i) a version of Newton's method with error bounds, (ii) a cubically convergent algorithm for the simultaneous approximation of all zeros of a polynomial. The algorithms and their theoretical foundation make use of circular arithmetic, an extension, based on the theory of Moebius transformations, of interval arithmetic from the real line to the extended complex plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of mathematical functions. New York: Dover 1965.

    Google Scholar 

  2. Henrici, P.: Uniformly convergent algorithms for the simultaneous determination of all zeros of a polynomial. Studies in Numerical Analysis2, 1–8 (1968).

    Google Scholar 

  3. — Methods of search for solving polynomial equations. J Assoc. Comp. Math.17, 273–283 (1970).

    Google Scholar 

  4. —, Gargantini, I.: Uniformly convergent algorithms for the simultaneous approximation of all zeros of a polynomial. Proc. Symp. on Constructive Aspects of the Fundamental Theorem of Algebra (B. Dejon and P. Henrici, eds.), pp. 77–114. London: Wiley-Interscience 1969.

    Google Scholar 

  5. — Watkins, B. O.: Finding zeros of a polynomial by theQ-D algorithm. Communications of the ACM8, 570–574 (1965).

    Google Scholar 

  6. Hille, E.: Analytic function theory, vol. 1. Boston: Ginn 1959.

    Google Scholar 

  7. Laguerre, E.: Sur la résolution des équations numériques. Nouvelles Annales de Mathématiques, sér. 2,17 (1878).=Oeuvres, vol. 1, pp. 48–66. Paris 1898.

  8. Lehmer, D. H.: A machine method for solving polynomial equations. J. Assoc. Comp. Mach.8, 151–162 (1961).

    Google Scholar 

  9. Moore, R. E.: Interval analysis. Englewood Cliffs: Prentice Hall 1966.

    Google Scholar 

  10. Nickel, K.: Über die Notwendigkeit einer Fehlerschrankenarithmetik bei Rechenautomaten. Numer. Math.9, 69–79 (1966).

    Google Scholar 

  11. —: Zeros of polynomials and other topics. Topics in interval analysis (E. Hansen, ed.), pp. 25–34. Oxford: Clarendon Press 1969.

    Google Scholar 

  12. Rokne, J., Lancaster, P.: Complex interval arithmetic. Comm. Assoc. Comp. Mach.14, 111–112 (1971).

    Google Scholar 

  13. Titchmarsh, E. C.: The theory of functions, 2nd ed. Oxford: University Press 1939.

    Google Scholar 

  14. Watson, G. N.: Bessel functions, 2nd ed. Cambridge: University Press 1952.

    Google Scholar 

  15. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik, II. Fundamentalsatz der Algebra und Grundlagen der Mathematik. Math. Z.20, 131–150 (1924).=Ges. Werke2, 444–452 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gargantini, I., Henrici, P. Circular arithmetic and the determination of polynomial zeros. Numer. Math. 18, 305–320 (1971). https://doi.org/10.1007/BF01404681

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404681

Keywords

Navigation