Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Topological quantum field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A twisted version of four dimensional supersymmetric gauge theory is formulated. The model, which refines a nonrelativistic treatment by Atiyah, appears to underlie many recent developments in topology of low dimensional manifolds; the Donaldson polynomial invariants of four manifolds and the Floer groups of three manifolds appear naturally. The model may also be interesting from a physical viewpoint; it is in a sense a generally covariant quantum field theory, albeit one in which general covariance is unbroken, there are no gravitons, and the only excitations are topological.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donaldson, S.: An application of gauge theory to the topology of four manifolds. J. Differ. Geom.18, 269 (1983); The orientation of Yang-Mills moduli spaces and 4-manifold topology. J. Differ. Geom.26, 397 (1987); Polynomial invariants for smooth four-manifolds. Oxford preprint

    Google Scholar 

  2. Freed, D., Uhlenbeck, K.: Instantons and four manifolds. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  3. Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Phys. Lett. B59, 85 (1975)

    Google Scholar 

  4. Taubes, C.: Self-dual Yang-Mills connections on non-self-dual 4-manifolds. J. Differ. Geom.17, 139 (1982)

    Google Scholar 

  5. Uhlenbeck, K.: Connections withL p bounds on curvature. Commun. Math. Phys.83, 31 (1982). Removable singularities in Yang-Mills fields. Commun. Math. Phys.83, 11 (1982)

    Google Scholar 

  6. Floer, A.: An instanton invariant for three manifolds. Courant Institute preprint (1987); Morse theory for fixed points of symplectic diffeomorphisms. Bull. AMS16, 279 (1987)

  7. Atiyah, M.F.: New invariants of three and four dimensional manifolds. In: The Symposium on the Mathematical Heritage of Hermann Weyl, Wells, R. et al. (eds.). (Univ. of North Carolina, May, 1987)

  8. Braam, P.J.: Floer homology groups for homology three spheres. University of Utrecht Mathematics preprint 484, November, 1987

  9. Witten, E.: Supersymmetry and morse theory. J. Differ. Geom.17, 661 (1982)

    Google Scholar 

  10. 't Hooft, G.: Computation of the quantum effects due to a four dimensional pseudoparticle. Phys. Rev. D14, 3432 (1976)

    Google Scholar 

  11. Jackiw, R., Rebbi, C.: Phys. Rev. Lett.37, 172 (1976)

    Google Scholar 

  12. Callan, C.G., Dashen, R., Gross, D.J.: Phys. Lett.63 B, 334 (1976)

    Google Scholar 

  13. Atiyah, M.F., Hitchin, N., Singer, I.: Self-duality in Riemannian geometry. Proc. Roy. Soc. London A362, 425 (1978)

    Google Scholar 

  14. Affleck, I., Dine, M., Seiberg, N.: Dynamical supersymmetry breaking in supersymmetric QCD. Nucl. Phys. B241, 493 (1984); Dynamical supersymmetry breaking in four dimensions and its phenomenological implications. Nucl. Phys. B256, 557 (1985)

    Google Scholar 

  15. Seiberg, N.: IAS preprint (to appear)

  16. Novikov, V.A., Shifman, M.A., Vainshtein, A.I., Zakharov, V.I.: Nucl. Phys. B229, 407 (1983)

    Google Scholar 

  17. Amati, D., Konishi, K., Meurice, Y., Rossi, G.C., Veneziano, G.: Non-perturbative aspects in supersymmetric gauge theories. Physics Reports (to appear)

  18. Friedan, D., Martinec, E., Shenker, S.: Nucl. Phys. B271, 93 (1986)

    Google Scholar 

  19. Peskin, M.: Introduction to string and superstring theory. SLAC-PUB-4251 (1987)

  20. Green, M.B., Schwarz, J.H., Witten, E.: Superstring theory. Cambridge: Cambridge University Press 1987

    Google Scholar 

  21. Witten, E.: Global anomalies in string theory. In: Symposium on anomalies, geometry, and topology. White, A., Bardeen, W. (eds.), especially pp. 90–95. Singapore: World Scientific 1985

    Google Scholar 

  22. Becchi, C., Rouet, A., Stora, R.: The abelian Higgs-Kibble model, unitarity of theS-operator. Phys. Lett.69 B, 309 (1974); Renormalization of gauge theories. Ann. Phys.98, 287 (1976)

    Google Scholar 

  23. Tyupin, I.V.: Gauge invariance in field theory and in statistical physics in the operator formalism. Lebedev preprint FIAN No. 39 (1975), unpublished

  24. Kugo, T., Ojima, I.: Manifestly covariant canonical formulation of Yang-Mills theories. Phys. Lett.73 B, 459 (1978); Local covariant operator formalism of non-abelian gauge theories and quark confinement problem. Supp. Prog. Theor. Phys.66, 1 (1979)

    Google Scholar 

  25. Polchinski, J.: Scale and conformal invariance in quantum field theory. Univ. of Texas preprint UTTG-22-87

  26. D'Adda, A., DiVecchia, P.: Supersymmetry and instantons. Phys. Lett.73 B, 162 (1978)

    Google Scholar 

  27. Witten, E.: AnSU(2) anomaly. Phys. Lett.117 B, 432 (1982)

    Google Scholar 

  28. Segal, G.: Oxford preprint (to appear)

  29. Horowitz, G.T., Lykken, J., Rohm, R., Strominger, A.: Phys. Rev. Lett.57, 283 (1986)

    Google Scholar 

  30. Witten, E.: Topological gravity. IAS preprint, February, 1988

  31. Witten, E.: Topological sigma models. Commun. Math. Phys. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

On leave from Department of Physics, Princeton University. Research supported in part by NSF Grants No. 80-19754, 86-16129, 86-20266

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witten, E. Topological quantum field theory. Commun.Math. Phys. 117, 353–386 (1988). https://doi.org/10.1007/BF01223371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01223371

Keywords

Navigation