Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dual-Arm Manipulation

  • Chapter
  • First Online:
Towards Service Robots for Everyday Environments

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 76))

Abstract

In robotic manipulation systems, a dual-arm configuration is needed for complex operations, like unscrewing a container, and can be useful for load sharing and manipulation of heavy and bulky objects. The potential of dual arm manipulation has recently also been identified for industrial production setups. We discuss how to coordinate such a system using impedance control. A two-arm control law consisting of a set of impedance subsystems is presented. The elasticity in the joints is handled within a singular perturbations based approach. Separate Cartesian impedance controllers for the arms are combined with a compatible coupling impedance. Then, an object level control law for the arms is discussed. The control architecture is briefly discussed. As a non-trivial example, the acquisition of a flat object from a table with grasping points that could not be achieved with a standard twojaw gripper is demonstrated. The robustness of the execution is increased by sliding along the table during the grasping phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Diftler, M.A., Ambrose, R.O., Goza, S.M., Tyree, K.S., Huber, E.L.: Robonaut mobile autonomy: Initial experiments. In: IEEE International Conference on Robotics and Automation, pp. 1437–1442 (2005)

    Google Scholar 

  2. Yokoi, K., Nakashima, K., Kobayashi, M., Mihune, H., Hasunuma, H., Yanagihara, Y., Ueno, T., Gokyuu, T., Endou, K.: A tele-operated humanoid operator. The International Journal of Robotics Research 25(5-6), 593–602 (2006)

    Article  Google Scholar 

  3. Platt Jr., R., Fagg, A.H., Grupen, R.A.: Manipulation gaits: Sequences of grasp control tasks. In: IEEE International Conference on Robotics and Automation, pp. 801–806 (2004)

    Google Scholar 

  4. Iwata, H., Hoshino, H., Morita, T., Sugano, S.: Human-humanoid physical interaction realizing force following and task fulfillment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 522–527 (2000)

    Google Scholar 

  5. Chiacchio, P., Chiaverini, S., Siciliano, B.: Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system. ASME Journal of Dynamic Systems, Measurement, and Control 118(4), 691–697 (1996)

    Article  MATH  Google Scholar 

  6. Luh, J.Y.S., Zheng, Y.F.: Constrained relations between two coordinated industrial robots for motion control. The International Journal of Robotics Research 6(3), 60–70 (1987)

    Article  Google Scholar 

  7. Uchiyama, M., Dauchez, P.: A symmetric hybrid position/force control scheme for the coordination of two robots. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 350–356 (April 1988)

    Google Scholar 

  8. Nakamura, Y., Nagai, K., Yoshikawa, T.: Mechanics of coordinative manipulation by multiple robotic mechanisms. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 991–998 (March 1987)

    Google Scholar 

  9. Williams, D., Khatib, O.: The virtual linkage: A model for internal forces in multi-grasp manipulation. In: IEEE International Conference on Robotics and Automation, pp. 1025–1030 (1993)

    Google Scholar 

  10. Chang, K.S., Holmberg, R., Khatib, O.: The augmented object model: cooperative manipulation and parallel mechanism dynamics. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 470–475 (2000)

    Google Scholar 

  11. Hayati, S.: Hybrid position/force control of multi-arm cooperating robots. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 82–89 (April 1986)

    Google Scholar 

  12. Schneider, S.A., Cannon, J.R.H.: Object impedance control for cooperative manipulation: Theory and experimental results. IEEE Transactions on Robotics and Automation 8(3), 383–394 (1992)

    Article  Google Scholar 

  13. Bonitz, R.G., Hsia, T.C.: Internal force-based impedance control for cooperating manipulators. IEEE Transactions on Robotics and Automation 12, 78–89 (1996)

    Article  Google Scholar 

  14. Hu, Y.-R., Goldenberg, A.A., Zhou, C.: Motion and force control of coordinated robots during constrained motion tasks. The International Journal of Robotics Research 14(4), 351–365 (1995)

    Article  Google Scholar 

  15. Liu, Y.-H., Arimoto, S.: Decentralized Adaptive and Nonadaptive Position/Force Controllers for Redundant Manipulators in Cooperations. The International Journal of Robotics Research 17(3), 232–247 (1998)

    Article  Google Scholar 

  16. Yamano, M., Kim, J.-S., Konno, A., Uchiyama, M.: Cooperative control of a 3d dual-flexible-arm robot. Journal of Intelligent Robotic Systems 39, 1–15 (2004)

    Article  Google Scholar 

  17. Miyabe, T., Konno, A., Uchiyama, M., Yamano, M.: An approach toward an automated object retrieval operation with a two-arm flexible manipulator. The International Journal of Robotics Research 23(3), 275–291 (2004)

    Article  Google Scholar 

  18. Sun, D., Mills, J.K.: Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Transactions on Robotics and Automation 18(4), 498–510 (2002)

    Article  Google Scholar 

  19. Kokotović, P.V., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press Inc. (1986)

    Google Scholar 

  20. Ott, C.: Cartesian impedance control of flexible joint manipulators. Ph.D. dissertation, Saarland University (2005)

    Google Scholar 

  21. Pratt, G.A., Williamson, M.M., Dillworth, P., Pratt, J., Ulland, K., Wright, A.: Stiffness isn’t everything. In: Preprints of the Fourth International Symposium on Experimental Robotics, pp. 253–262 (1995)

    Google Scholar 

  22. Harville, D.: Matrix Algebra from a Statistician’s Perspective. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  23. Caccavale, F., Natale, C., Siciliano, B., Villani, L.: Six-dof impedance control based on angle/axis representations. IEEE Transactions on Robotics and Automation 15(2), 289–299 (1999)

    Article  Google Scholar 

  24. Natale, C.: Interaction Control of Robot Manipulators: Six-Degrees-of-Freedom Tasks. STAR, vol. 3. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  25. Fasse, E.D., Broenink, J.F.: A spatial impedance controller for robotic manipulation. IEEE Transactions on Robotics and Automation 13(4), 546–556 (1997)

    Article  Google Scholar 

  26. Fasse, E.D.: On the spatial compliance of robotic manipulators. ASME Journal of Dynamic Systems, Measurement, and Control 119, 839–844 (1997)

    Article  MATH  Google Scholar 

  27. Zhang, S., Fasse, E.D.: Spatial compliance modeling using a quaternion-based potential function method. Multibody System Dynamics 4, 75–101 (2000)

    Article  MATH  Google Scholar 

  28. Stramigioli, S., Duindam, V.: Variable spatial springs for robot control applications. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1906–1911 (2001)

    Google Scholar 

  29. Stramigioli, S.: Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-free Approach. LNCIS, vol. 266. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  30. Rodriguez-Angeles, A., Nijmeijer, H.: Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Transactions on Control Systems Technology 12(4), 542–554 (2004)

    Article  Google Scholar 

  31. Ott, C., Nakamura, Y.: Employing wave variables for coordinated control of robots with distributed control architecture. In: IEEE International Conference on Robotics and Automation, pp. 575–582 (May 2008)

    Google Scholar 

  32. Wimböck, T., Ott, C., Hirzinger, G.: Impedance behaviors for two-handed manipulation: Design and experiments. In: IEEE International Conference on Robotics and Automation, pp. 4182–4189 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wimböck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Wimböck, T., Ott, C. (2012). Dual-Arm Manipulation. In: Prassler, E., et al. Towards Service Robots for Everyday Environments. Springer Tracts in Advanced Robotics, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25116-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25116-0_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25115-3

  • Online ISBN: 978-3-642-25116-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics